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§Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, Shanghai, 200444,
People’s Republic of China

*S Supporting Information

ABSTRACT: Knowledge of the structure and dynamics of
biomolecules is essential for elucidating the underlying
mechanisms of biological processes. Given the stochastic
nature of many biological processes, like protein unfolding, it is
almost impossible that two independent simulations will
generate the exact same sequence of events, which makes
direct analysis of simulations difficult. Statistical models like
Markov chains, transition networks, etc. help in shedding some
light on the mechanistic nature of such processes by predicting
long-time dynamics of these systems from short simulations.
However, such methods fall short in analyzing trajectories with partial or no temporal information, for example, replica exchange
molecular dynamics or Monte Carlo simulations. In this work, we propose a probabilistic algorithm, borrowing concepts from
graph theory and machine learning, to extract reactive pathways from molecular trajectories in the absence of temporal data. A
suitable vector representation was chosen to represent each frame in the macromolecular trajectory (as a series of interaction and
conformational energies), and dimensionality reduction was performed using principal component analysis (PCA). The
trajectory was then clustered using a density-based clustering algorithm, where each cluster represents a metastable state on the
potential energy surface (PES) of the biomolecule under study. A graph was created with these clusters as nodes with the edges
learned using an iterative expectation maximization algorithm. The most reactive path is conceived as the widest path along this
graph. We have tested our method on RNA hairpin unfolding trajectory in aqueous urea solution. Our method makes the
understanding of the mechanism of unfolding in the RNA hairpin molecule more tractable. As this method does not rely on
temporal data, it can be used to analyze trajectories from Monte Carlo sampling techniques and replica exchange molecular
dynamics (REMD).

1. INTRODUCTION

Molecular dynamics simulations (MD) provide atomistic
explanations of different phenomena exhibited by complex
systems like protein (un)folding,1−5 drug-receptor interac-
tions,6−10 rapid internal fluctuations, or conformational changes
within macromolecules.11−15 Given initial positions and
velocities, these simulations closely follow the temporal
evolution of a system in its energetically accessible phase
space. This time evolution of the system is stored as positional
coordinates of its atoms corresponding to each time step.
Development of better theoretical algorithms and computer
hardware has been conducive in extensive sampling of the
phase space of these biological systems.16−18 However, this also
results in a raft of raw simulation data, which in its unprocessed
form provides very little insight into the structure and dynamics
of the underlying system.
Traditional methods, aimed at making these data more

tractable, drastically reduce the complexity of the problem by
projecting these high-dimensional positional coordinates onto a

low-dimensional manifold. The characterization of this
manifold is highly dependent on the chemists’ expertise. For
instance, protein unfolding trajectories are often analyzed by
observing the time evolution of certain order parameters such
as root-mean-square deviation (RMSD), radius of gyration
(RGYR), fraction of native contacts, etc. The effectiveness of
these methods depends heavily on the quality of the order
parameters used.19 In a more system agnostic direction,
dimensionality reduction techniques like PCA have been
commonly employed to reduce the degrees of freedom from
a highly correlated atomic position’s configuration space to a
more manageable low dimensional space.20−22 While these
techniques are credible in their own right, they show a one-
dimensional view of a multidimensional problem. For instance,
by observing the RMSD of a protein (with respect to its native
state) vs time, one can understand how much the molecule
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unfolds with respect to time but stay oblivious to finer details
like how different molecular configurations interacted with each
other in this process. Similarly, the free energy landscape of a
system undergoing a structural change like unfolding can be
constructed by binning the low-dimensional coordinates along
its principal components. However, this PCA projection only
faintly captures the essence of the high-dimensional free energy
landscape.23

These limitations have led to a paradigm shift in studying the
energetics of a system in terms of its metastable states.24,25 The
dynamical evolution of a system in its configuration space can
be thought of as traversing its potential energy surface (PES).
Topological features like energy basins and transition states
connecting them form a simple representation for analyzing the
PES of a biomolecule for pathways, kinetics, etc.26,27 The first
step toward identifying these metastable states involves
grouping different molecular configurations in the configuration
space into clusters depending on a “similarity” metric.28−31

These clusters help in identifying the different conformational
substates visited by the MD simulation.32 The “similarity”
metric depends on the clustering algorithm33 employed (k-
means,34 self-organizing maps,35 average-linkage etc.). A good
clustering algorithm should partition the molecular config-
uration space into distinct groups which are in good agreement
with the energy basins present in its PES in an unbiased
manner. Shao et al., through extensive analysis, showed that
there is no such single clustering algorithm.36 All the algorithms
operate under a certain set of assumptions about the underlying
data (say, number of clusters in the case of k-means, or the
bandwidth of the Gaussian distributions within the data in the
case of mean-shift37). These assumptions bias the results thus
obtained.
A search for more robust techniques has led to the

development of a second layer of clustering techniques over
the geometric ones. These methods are called dynamic or
kinetic clustering methods, as they directly tap into the
temporal information available in MD trajectories of molecular
systems. This kinetic information helps to differentiate between
microstates that are kinetically inaccessible due to an energy
barrier between them, thus reproducing the natural energy
basins. Most probable path (MPP)23 and robust Perron cluster
analysis (PCCA+)38 are some of the state-of-the-art dynamic
clustering algorithms.
Having identified these metastable states, Markov state

models (MSMs) provide a very natural way of extracting
both thermodynamic and kinetic information from simulations
of biological systems.39−42 One of the successes of MSMs is
that they allow the possibility of a high resolution description of
the intrinsic dynamics of a system in terms of “microstates,” as
compared to a handful of important “states” defined by an
experimental chemist. However, the efficacy of a MSM is
limited to the amount of PES sampled by a MD simulation.
Due to the danger of a system being trapped in a single energy
basin, it is computationally infeasible to map the entire PES
from a single MD simulation. Attempts have been made to
construct MSMs from several short MD simulations starting
from different parts of the PES.43 However, the expanse of the
PES traversed by these simulations will depend on the
conformational variation of the starting structures. This is
limited by the computational chemist’s expertise and under-
standing of how the PES behaves with respect to different
conformations of the system under study.

Replica exchange molecular dynamics (REMD) is an
enhanced sampling method originally introduced by Swendsen
and Wang.44 In this method, several independent MD
simulations are run at different temperatures with periodic
exchanges between configurations belonging to adjacent
temperatures. This method circumvents the problem of a
system being trapped in an energy basin by performing periodic
exchanges with higher temperature systems according to the
Metropolis criteria. As a result, the system is able to cover a
much larger portion of the PES without the requirement of
several independent simulations starting from different parts of
the PES. Unlike other enhanced sampling methods like
umbrella sampling45 or metadynamics,46 REMD does not
require the specification of an appropriate “reaction coordinate”
and thus is useful in studying conformational changes in an
unbiased manner.
The lack of temporal information between configurations,

before and after a replica exchange, impedes the construction of
the transition matrix for a MSM. In recent years, there have
been some efforts to extract kinetic information from such
discontinuous trajectories.47−49 Buchete and Hummer48

exploited the property that REMD allows accurate calculation
of Hamiltonian dynamics on a short time scale, δREMD, between
replica exchanges to obtain solutions to the master equations,
which can subsequently be used to construct MSMs. One
drawback of this work is that it only accounts for fast interstate
transitions with a time-scale smaller than δREMD. Conforma-
tional dynamics in real systems typically exhibit relatively longer
characteristic time scales. Setzl and Hummer50 proposed a
probabilistic framework of estimating interstate transitions in
real systems from REMD simulations for constructing the
master equations. Their method involves evaluating histograms
of the “reaction coordinate” over all REMD transition paths
and equilibrium trajectories. Identification of a good “reaction
coordinate” for a complex biological process is an active field of
research.51−54 The transition-based reweighting analysis
method developed by Wu et al.,55 which allows for calculation
of thermodynamic and kinetic properties of a system from
multiensemble trajectories, can be used to successfully extract
kinetics from REMD simulations. Nevertheless, it harnesses the
partial temporal information available in trajectory data
(simulation data between temperature swaps) and hence
cannot be used in the scenario where absolutely no temporal
information is available, for instance, in the case of Monte Carlo
trajectories. Even in the case of REMD simulations, sometimes
interstate transitions of macromolecules have a time-scale of
about 50 ps.56 The likelihood of observing this transition in a
continuous segment (no temperature swap) of a standard
REMD simulation, employing an exchange attempt every 2 ps,
is extremely small. Let us assume that the spacing between
adjacent temperature replicas was chosen such that there is
significant energy overlap between them to ensure an
acceptance probability of 0.2. Now, the probability for
observing a continuous segment for at least 50 ps would be
0.825 = 0.004, which is negligible. Thus, this information would
not likely be accounted for while estimating an MSM using the
TRAM approach for such a system.
In this paper, we try to address a more general problem:

“given an equilibrium sampling of the configuration space of
any system, is it possible to extract the most reactive path
between any two configurations?” Such a method will be
beneficial in analyzing any biological process in an unbiased
way without the requirement of in-depth knowledge about the
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system. Our method can also be applied to Monte Carlo
simulation techniques,57−59 where, unlike REMD, even partial
temporal knowledge of the system is unavailable. In this work,
we demonstrate the application of our method in analyzing
RNA unfolding trajectories. The outline of the paper is as
follows: First, we build the theory behind the proposed
methodology. Second, we demonstrate the utility of our
method for studying the dynamics of a system by comparing
the results of our algorithm with that obtained from MSM
analysis of a standard MD simulation of RNA hairpin in 8 M
urea solution at 300 K. Third, as a proof of concept, we use our
method to analyze a REMD simulation of the same RNA
molecule.

2. THEORY AND METHODOLOGY

Our method for extracting dynamic information from
trajectories involves (i) choosing an appropriate vector
representation for the trajectory, (ii) identifying metastable
states (energy basins) from the MD trajectories by clustering,
(iii) creating a network with these metastable states as nodes,
and (iv) constructing the most probable conformational path of
the system. A bird’s eye view of our methodology pipeline is
illustrated in Figure 1, with each part explained in greater detail
in subsequent subsections.
2.1. Choosing an Appropriate Vector Representation.

Molecular dynamics simulations produce a vast amount of data
in the form of trajectories which enumerate the positions of
every particle in the system with respect to time. If a trajectory
has N snapshots with M atoms, it will have N × M × 3 values
(factor 3 comes from x, y, and z coordinates of each atom).
These positional coordinates contain all the information
necessary for extracting dynamic and structural features of the
system under study, within the limitations of sampling,
generality of force field, etc. Using these coordinates directly
to identify energy basins would introduce artifacts due to global
translations and rotations of the system during the simulation.
The energy of the system is only affected by internal motions
within the system, like conformational changes.

Depending on the application, a suitable basis vector
representation should be chosen for subsequent processing.
We call this part “preprocessing of the trajectory data.” Any
vector basis ideally should satisfy the following properties:
i. There exists a scalar function f:X → Y, where X represents

the vector representation (x1, x2, x3, ..., xn) assuming an n-
dimensional representation. The range of this function f must
be equal to the entire accessible PES of the molecular system.
This ensures comprehensiveness of the basis chosen.
ii. There must exist a mapping function g:X′ → X, where X′

represents the original Cartesian position coordinates obtained
from MD trajectories. This function g must be one-to-one to
ensure specificity of the representation, i.e., each unique MD
snapshot X′, must map to one unique point in the vector basis
X chosen.
iii. The representation must be robust to changes in the

system such as global translations and rotations of the system,
which does not change the energetics of the system.
As the proposed algorithm in this paper involves topological

features of the vector space representing the trajectory, small
changes along the dimensions of the feature vector must
correspond to small changes along the energy surface.

2.2. Identifying Metastable States. Stillinger and
Weber60 showed that the partition function can be rewritten
as a summation of separate contributions from quench regions
along a PES. A quench region is defined by a local minimum
and its immediate neighborhood in the configuration space
(core region). Thus, identifying energy basins is sufficient to
describe the thermodynamics of the system. This method has
since been successfully applied to many different systems like
condensed silicon,61 water,62 amorphous metal−metalloid
alloys,63 organic molecules, and proteins.64

The first step of our pipeline involves identifying these
energy basins or metastable states from a given conformational
sampling of a natural system. A system oscillates in an energy
basin until it gets enough energy to cross the energy barrier and
hop into an adjacent basin. Tii represents transition probability
that the system is in state i at time = t and again at state i at
time = t + τ, for any lag time τ. Internal motions within a

Figure 1. A bird’s eye-view of the overall pipeline for the proposed method.
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molecular system arise from oscillations between these energy
basins.65 When a system is in any of these local minima, the
transition probability can be defined as Tii ≈ 0. This is the
condition for a metastable state; i.e., the system appears to be at
a stable minimum if seen for a short period of time but
eventually escapes to some other location on the PES.
Directly applying geometric clustering techniques like k-

means, Gaussian mixture models, mean-shift, etc. to identify
these metastable states can lead to erroneous partitioning of the
configuration space. Without a loss of generality, let us consider
a toy system described by a 1D position coordinate r. Given
enough sampling, the geometric clustering algorithm will group
the configurations into two clusters at 4.0 Å, the midway point.
However, as shown in Figure S1 in the Supporting Information,
the geometric criteria need not coincide with the energy barrier
which truly separates the two energy basins, which is at 4.8 Å
for the toy system under consideration. It is difficult to
construct a transition matrix of different microstates or a
Markov state model for dynamic clustering without information
on how the system evolved over time. Boltzmann sampling of a
molecular system using REMD and hybrid Monte Carlo
methods66,67 lacks this temporal knowledge for dynamic
clustering.
To address this problem, we rely on certain assumptions to

identify metastable states in such situations. Intuitively, when a
system fluctuates in an energy basin, it gives rise to a sampling
of conformations which are structurally similar. Here, by
structurally we do not necessarily refer to the 3N Cartesian
coordinates describing a system with N atoms. This structure
can be any descriptor used to denote every configuration the
system can be in, as explained in subsection 2.1. We then
perform PCA on the trajectory data so as to reduce to
dimensions that describe 99% of the data. The idea behind this
is that as Euclidean distances between two different snapshot
vector configurations are indicative of how much they differ
from each other, keeping 99% of the variance would ensure that
PCA nearly preserves the Euclidean distances between
snapshots as the contribution of the other 1% is negligible.
For all subsequent purposes, this reduced dimensional
representation (subspace spanned by the principal compo-
nents) is referred to as the high-dimensional data. For example,
57 principal components contribute to 99% of the variance in
trajectory data corresponding to an RNA hairpin molecule at
410 K in an aq. urea solution. The projection from original 93D
(this is delineated in subsection 4.1) to reduced 57D (spanned
by the principal components) is referred to as the high-
dimensional data.
Consider every single snapshot in a trajectory to be a point in

some low dimensional manifold. We assume that the local
topology of a given snapshot in this manifold has all the
information necessary to characterize an energy basin. We
project the nD configurations to a 2D plane using a nonlinear
dimensionality reduction technique, t-distributed Stochastic
Neighbor Embedding (t-SNE).68 In this method, the
dimensionality reduction is formulated as an optimization
problem. The MD trajectory is comprised of N snapshots of
high-dimensional objects (x1, x2, x3, ..., xn).
t-SNE defines neighborhood probabilities pij as

=
∑

σ

σ

|

− || − ||
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The parameter σi determines the bandwidth of the Gaussian
distribution for the data point xi. For each xi, σi is determined
using a binary search such that the induced probability
distribution Pi has a fixed user-defined perplexity, 2H(Pi). H(Pi)
refers to the Shannon entropy of Pi, defined as ∑jp(j|i) log2 p(j|i).
It then creates a one-to-one mapping to a 2D space (y1, y2, y3,

..., yn) with the local neighborhood probability qij defined as

=
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The algorithm then tries to reproduce the joint Gaussian
probabilities in high-dimensional space with a heavy tail
Student t-distribution in 2D space. This is formulated by the
following optimization problem:

∑ ∑=C p
p

q
min log

i j
ij

ij

ij (4)

Intuitively, the minimum value of this function C is 0, as
probabilities cannot be negative. If pij = qij ∀ i,j, then C = 0. Due
to higher volume, it is impossible to encode all the information
encapsulated in high dimension data to a lower dimension
manifold. This is known as the “crowding problem.”68 As we
are only interested in the immediate local neighborhood of a
point, t-SNE ensures that this information is retained. The
heavy-tailed distribution attracts points in the immediate
neighborhood of a reference point closer to it while all other
points are repelled further away. This is delineated in Figure S2
in the Supporting Information. The figure illustrates a toy 1D
example with a standard Gaussian distribution (μ = 0 and σ =
1) and a Student’s t-distribution with 1 degree of freedom
(Cauchy distribution). Due to the nature of these distributions
used in the t-SNE algorithm, the probability of a point is
positively correlated to the similarity (spatial closeness) of these
points. The Cauchy distribution tries to reproduce the Gaussian
distribution in lower dimension. Without a loss of generality,
observing the 1D toy example it is evident that due to the heavy
tails of the Cauchy distribution a value of 0.05 will take a larger
r value compared to that of the Gaussian distribution (repelling
force). However, a high probability value like 0.20 has a smaller
r value for the Cauchy distribution compared to the Gaussian
distribution (attractive force). This ensures that points close to
each other in the 2D manifold are structurally very close. We
chose a 2D manifold as with higher dimensions the “crowding
problem” is not properly compensated by the heavy-tail
distribution. The t-SNE algorithm presents the memory
bottleneck for our pipeline. It requires computation of pairwise
similarities. Thus, the memory requirement scales as O(N2)
with N being the number of data points. This necessitates a
greater time-lag between adjacent frames than that saved by the
original trajectory (usually 2 ps), so as to fit the whole
trajectory in the main memory. This is further expanded upon
in subsection 4.3.
Functional motions in large biomolecules, like proteins, often

involve small fluctuations in structures. Inadequate sampling of
some states might lead to their misassignment to one of the
geometrically nearby energy basins that are well-sampled. The
t-SNE preprocessing step ensures that only extremely close
points in the high-dimensional configuration space lie in close
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proximity to each other in the 2D reduced space. We claim that
such a high degree of spatial similarity necessitates that these
points belong to the same energy basin, thus eliminating the
need for a secondary dynamic clustering technique to align the
cluster boundaries with those of the energy barriers along the
PES.
These metastable energy basins can be of any arbitrary shape

or size. Geometric clustering algorithms like k-means or more
generalized Gaussian mixture models assumes that these
clusters are Gaussian/hyperspheres in shape. Superposition of
several Gaussians take any arbitrary shape in trajectory vector
hyperspaces.69 However, in the absence of a second kinetic
clustering wrapper around the initial geometric criteria, this is
not possible. Unlike other algorithms, density-based clustering
algorithms have recently found success in analyzing simulation
trajectories.70,71 An advantage of density-based methods is that
it automatically identifies the number of clusters from data and
thus is adaptive to the system under study. The DBSCAN
algorithm72 identifies metastable energy basins as regions of
high density points in the configuration space sampled by the
trajectory. We apply this algorithm on the 2D map of the
trajectory data generated by t-SNE. As proximal points in the t-
SNE 2D manifold are much better indicators of membership to
the same energy basin than proximal points in the original high-
dimensional space, applying DBSCAN in the original
configuration space would give inferior results.
The DBSCAN algorithm requires two parameters minPts and

eps. The parameter minPts is the minimum number of points
required to form a cluster and is derived from this minimum
lifetime of a metastable state. The parameter eps can be thought
of as the radius of the hypersphere that defines the
neighborhood of each point. A system oscillates in an energy
basin, gets enough energy, and suddenly hops to another
energy basin. Subsequently, it can also hop back to a previously
visited energy basin. However, in order to be classified as a
metastable state, the system has to have a minimum lifetime in
an energy basin. This lifetime depends on the nature of the
system. A point belongs to any cluster only if at least one other
point lies inside its eps neighborhood, else the point is classified
as an outlier/noise. In this work, a maximum of about 1% of the
trajectory data was labeled as noise. We estimate eps using the
method outlined by Sawant.73 A more detailed discussion on
the choice of these two parameters (minPts and eps) employed
in this work is presented in subsection 1 in the Supporting
Information. Note that any density-based clustering algorithm
such as HDBSCAN and DBSCAN* should achieve similar
results; the crucial step here is the t-SNE preprocessing step
that enables the geometric cluster boundaries to align closer to
the natural energy barriers without the need for a secondary
kinetic clustering wrapper. This assumption is verified in
subsection 4.2, where we compare the quality of our clusters to
those obtained by a kinetic clustering algorithm.
Once each cluster is identified, we perform a kernel density

estimation,74,75 using the Gaussian kernel on the data points in
original high-dimension space. From the learned nonparametric
probability distribution for each cluster, we perform a Monte
Carlo estimation of the average structure as the “representative
element” for that cluster. Refer to subsection S.2 in the
Supporting Information for short notes on Monte Carlo
average and kernel density estimation.
This is carried out in high-dimensional space because t-SNE

only preserves local topology of the vector space while totally
ignoring the global arrangement of these data points. This was

sufficient for identifying clusters, where only the local topology
was relevant, but in order to determine how these metastable
states interact with each other dynamically, their relative
arrangement globally is important.

2.3. Creating a Network. After having successfully mined
the metastable states from the trajectory, one needs a method to
connect these energy basins together and map the PES for the
system. To this end, we turn to statistics and graph theory.
Consider the “representative element” from each of these
clusters as nodes in a graph. A graph G(V, E) is a mathematical
structure consisting of V, vertices/nodes, and E, edges
connecting these nodes. One could construct a Markov state
model to easily connect these metastable states with edges
representing the transition probability between states, but in
the absence of any temporal data, this is not possible.
Imagine the trajectory to be a set of N data points with M

identified metastable states. Each of these N data points
represents a state the system was in through the course of its
simulation. So, say the system was in state i at time t. It has to
be in one of the M metastable states at time (t − Δt). It can be
the same metastable state that state i belongs to, or some other
metastable state with enough energy to jump the energy barrier
in Δt time. We follow the Markovian assumption that in order
to know the probability that the system is in state i at time t, we
need to look no further than (t − Δt). We adopt a probabilistic
model to deal with the uncertainties regarding which
metastable state the current trajectory snapshot came from.
Our method draws inspiration from a coin toss experiment

with a biased and an unbiased coin.76 Given 100 samples of
heads and tails with the information of which coin resulted in
which coin toss result, we can easily find the probabilities of
getting heads from each coinnamely, 0.8 (biased) and 0.5
(unbiased). This is easy to estimate:

=
#

#
p(biased coin gives heads)

 of heads by biased coin
 of biased coin tosses

(5)

=
#

#
p(unbiased coin gives heads)

 of heads by unbiased coin
 of unbiased coin tosses

(6)

However, if the same data set is given to us without
information regarding which toss came from which coin, these
become hidden variables. We assume each toss came with some
probability from each of these coins and iteratively learn these
parameters using an algorithm called Expectation Maximization
(EM).77 Similarly, assume each MD snapshot can probabilisti-
cally come from each of the metastable states, the hidden
variables.
Let xi be the ith frame of the trajectory and zj represent the

jth metastable node. p(xi, zj|θ), represents that the system was
in energy basin j at time = t and will attain snapshot i in time = t
+ τ, τ being the Markovian lag time for the process. θ refers to
the underlying parameters of the probabilistic model. These
probabilities are estimated using the EM algorithm, which
iteratively maximizes the log-likelihood of data. The log-
likelihood of the trajectory data is

∑ ∑ θ= |G p x zlog ( , )
i j

i j
(7)

Maximizing this directly is difficult due to the summation
over hidden variables being inside the logarithm function. So,
EM maximizes the expectation value of the log-likelihood F =
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Expectation(G) instead. It has been shown that maximizing this
F monotonically maximizes G78 (defined in eq 7):

∑ ∑
θ

=
|⎛

⎝
⎜⎜

⎞
⎠
⎟⎟F M

p x z

M
log

( , )

i j
ij

i j

ij (8)

Here, Mij represents the membership probability that xi came
from hidden variable zj.
The algorithm involves two steps, the M step and the E step,

as an alternating maximization procedure. In the E step, the
probability parameters θ are kept constant while argmaxM
F(θ,M) is calculated. M refers to Mij ∀ i,j. In the M step, the
membership probabilities M are kept constant while argmaxθ
F(θ,M) is calculated. This is done iteratively until the expected
log-likelihood F converges within a threshold value epsilon. For
our method, we chose an epsilon value of 10−6.
Having laid down the basic idea of the EM algorithm, we

now define the nature of the probability density function used,
p(xi, zj|θ).
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The parameters to learn θ are ∑j, β, φj ∀ i, j. μj, Ei, and εj ∀ i,
j are hyperparameters for the algorithm and are set by the user
depending on the nature of the system under study.
Hyperparameters refer to parameters that are user-defined
and not explicitly learned by the learning algorithm. The
parameter Ei depends on the total energy of the ith frame of the
trajectory, εj depends on the “representative energy” of the jth
metastable node, and μj is taken to be the vector descriptor of
the “representative element” for each cluster, which is defined
in the previous subsection. The “representative energy” for each
cluster (metastable node) can be obtained in a similar way.
Instead of learning a kernel density over the vector descriptors
for all the structures in a cluster, we learn a probability
distribution over the energies’ Ei’s associated with each
conformation in a particular cluster. The “representative
energy” is then simply the Monte Carlo average estimated
from a random sampling of 10 000 points from the learned
probability density for each cluster.
This probability density function is a hybrid of a Gaussian

distribution and the Boltzmann distribution. Intuitively, a
transition probability from a metastable energy basin j to a
particular configuration i can be defined as

θ| = | |p x z p z g x z a x z( , ) ( ) ( ) ( )i j j i j i j (10)

where p(zj) defines equilibrium probability of the metastable
cluster j, used as φj. Without any prior knowledge about the
nature of these metastable states, this value is initialized to a
uniform value of 1/(# of metastable clusters) ∀ j.
g(xi|zj) defines the probability of generating a trial move for

obtaining configuration i from energy basin j. This function
probabilistically incorporates the fact that spatially closer
configurations of natural systems are more probable within a
small lag time τ. Most natural systems change in a well-behaved

manner without sudden jumps along the PES. We model this
g(xi|zj) with a Gaussian distribution with its mean centered at
μj, with the covariance matrix ∑j being the only learnable
parameter.
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For all j, ∑j is initialized to be the covariance matrix of the
entirety of the trajectory data. To prevent instabilities in the
covariance matrix, it is added with a small regularization factor.
The final part a(xi|zj) is the acceptance probability of

accepting a configuration i to come from energy basin j. The
Metropolis criteria for accepting a new configuration are min(1,
exp(−β(Ei − εj))). Thus, if the energy of a given snapshot, Ei,
has lower energy than the metastable cluster “representative
energy,” εj, it is always an accepted move. If the snapshot
energy is higher, it is accepted by a probability of exp(−β(Ei −
εj)), with β being the normalization constant.

β ε| = − −a x z E( ) min(1, exp( ( )))i j i j (12)

This in some way ensures that the equilibrium probability
density learned by the EM algorithm is consistent with the
Boltzmann distribution; i.e., the dynamics of the most probable
path are being constructed from an NVT ensemble. The
learnable parameter here is β, which is initialized to 1/(kBT); kB
is the Boltzmann constant and T is the temperature of the
system under study. However, as we have no a priori
information about the system and choose a maximum
likelihood estimation of parameters to come up with an
optimal distribution for the given sampling of the system, the β
value need not be directly related to the temperature of the
system.
The log-likelihood of this function, from eq 9:
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In each iteration, EM alternates between an E step and an M
step until convergence. The overall idea of the algorithm is
outlined as a flowchart in Figure 2. The update rules are as
follows:
E step

θ
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∑ |
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M x x
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Having learned the probabilities p(xi,zj|θ) for all config-
urations sampled i and clusters identified j, we estimate the
transition probabilities Π(a|b). Π(a|b) is defined as the
probability the system will transition to energy basin a from
energy basin b, in lag time τ:

∑ θΠ | = |a b x p x z( ) 1 ( ) ( , )
i

a i i b
(18)

The index i runs over all the conformations sampled in the
trajectory, i.e., the number of snapshots in the trajectory.
1a(xi) is an indicator function with a being a subset of all

frames of the trajectory belonging to metastable cluster a.

= ∈

= ∉

x x a

x a

1 ( ) 1 if

0 if
a i

(19)

These transition probabilities, Π(a|b), denote directional
edges between metastable node b to metastable node a in the
digraph G = (V, E).
2.4. Extracting Most Probable Conformational Paths.

Finally, having obtained a graph with metastable states as nodes
and transition probability weighted edges connecting them, one
needs a way to extract some dynamical information from this
graph. Over the years, numerous efforts have been made to
study macromolecular dynamics using graphs.79−81 Here, we
present a simple way to extract some relevant information
about the conformational dynamics of the system with ideas
inspired from transition path theory.82

Any conformational change can be characterized by an initial
state, final state, and intermediates connecting them. The final

state is not necessarily unique. There is an ensemble of
pathways possible from a given initial state to a final state. This
method provides a systematic way for extracting the “most
reactive” conformational path. Every molecular process can be
visualized as a finite sequence of edges from a starting state to a
destination state. The rate of such a reaction would depend on
the rates at which these edges (transition between intermediate
states) are traversed. The edge with the slowest rate is the rate
limiting step of this process and thus the “bottleneck” of the
said reaction. We define the “most reactive” path as that
sequence of edges from the given digraph G = (V, E) with the
fastest rate-limiting step. The edges of the digraph represent
transition probabilities from one energy basin to another as
described in the previous section. Let us assume Π(a|b)
(directed edge from b to a) is of value 0.4. This means that if
100 molecules are fluctuating at energy basin b at a given time t,
about 40 of them would transition to energy basin a in time t +
τ. With this knowledge, we define the “bottleneck” of a reactive
path as the smallest edge along that path. The “most reactive
path” would then be a path p whose smallest path is the largest
possible from a set of all candidate paths connecting the initial
state to the final state. This is known as the “widest path
problem.” The widest path need not be unique as multiple
paths can have the same smallest edge. To ensure uniqueness of
the “most reactive path,” we define paths recursively. Let P be a
set of candidate widest paths from A to B. The set P can be
partitioned into two paths (Pl, Pr) by removing the smallest
edge. For instance, if a candidate path was A, ..., x, y, ..., B, with
edge E(x,y) being the smallest edge, Pl will include the paths
with A as the initial state and x as the final state and Pr would
include the paths with y as the initial state and B as the final
state. We recursively compute the “widest path” with these
modified start and end states and prune paths from Pl and Pr.
We continue this process until only one path remains, the
“most reactive path.” The rationale behind this pruning of
candidate paths is that in a stepwise molecular process, the
fastest process will be the one where every step is the fastest
possible. This is achieved using a modified version of Dijkstra’s
algorithm83 as explained below. We use a max heap priority
queue, which is an efficient data structure for querying and
popping the element with the highest key value for a given
array of elements.
Input: Digraph G(V, E), start vertex s ∈ V, matrix c

containing edge weights for all (u,v) ∈ E.
Output: Most reactive path P

• Initialize dist[s] = ∞, prev[s] = −1
• For each vertex v ∈ V − {s}, initialize dist[v] = −∞,

prev[v] = v
• Insert all vertices in a priority queue (max heap) Q with

[key,value] = [dist[v],(v, prev)]
• While Q is not empty −

• Remove topmost element from heap u.
• For all vertices v such that edge (v,u) ∈ E −

• new_dist = max(min(dist[u], c(u,v)), dist-
[v])

• Update corresponding key values in the
priority queue, with corresponding parent
node• Retrace the prev array backward from the end state to the

start node s to find the edges involved in the widest path.

The greedy aspect of Dijkstra’s algorithm ensures that each
subpath u1, u2, ..., uk is no better than the path u1, u2, ..., ul ..., uk

Figure 2. Flowchart depicting the overall flow of logic of the
expectation maximization (EM) algorithm. Here μ, E, and ε are the
user supplied parameters to the algorithm. E refers to the total energy
of the snapshots, and μ and ε refer to the “representative element” and
the “representative energy” of each cluster, respectively (refer to
subsections 2.2 and 2.3 for definitions). The parameters ∑, β, and φ
are learned from data. For initialization of these parameters, refer to
subsection 2.3.
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selected by the algorithm l < k in terms of the cost (path, with
largest possible value of smallest edge, connecting node 1 to
node l). Greedy algorithms is a class of computational
algorithms which, at each step, locally makes the choice
which provides maximum benefit to the cost it optimizes.84 The
algorithmic complexity of Dijkstra’s widest path algorithm is
O(|E| + |V| log|V|), where |E| denotes the number of edges in
the graph and |V| represents the number of vertices/nodes.
The implementation of our algorithm is available free of

charge at https://bitbucket.org/adityababiblue1994/
macromolecule_unfolding. We utilized the scikit-learn85 and
Theano86 machine-learning frameworks. SciPy,87 numPy,88

mdtraj,89 and matplotlib90 modules were also used. A standard
.dcd file, along with the corresponding .pdb file is needed as
input.

3. SIMULATION METHODS
To test the validity of our method, we simulated three unbiased
MD trajectories of a RNA hairpin loop (with sequence
GGGCGAAAGCCU) in 8 M urea solution for 300, 100, and
100 ns at 300, 360, and 410 K, respectively. The secondary
structure of the RNA hairpin is provided in Figure 3. The RNA

hairpin unfolds within 20 ns above 360 K but takes about 189
ns to unfold at 300 K; hence, a 300 ns time scale was used at
this temperature alone to properly sample the unfolding
phenomena. CHARMM all-atom force field for nucleic acids91

and the CHARMM general force field (CGenFF) for urea92

were employed, and NAMD 2.1293 was used to run these
simulations. All simulations were carried at a constant pressure
of 1 atm using a Nose−́Hoover Langevin piston. The piston
period and decay parameters were set to 100 and 50 fs,
respectively. Initially, the RNA molecule in the aqueous urea
solution was subjected to an initial 5000 step energy
minimization, followed by, first, a 200 ps equilibration run at
constant temperature, with constraints on the heavy atoms in
the RNA moiety, and a subsequent 1 ns NVT run without any
constraints.
For proof of concept, we also performed a REMD simulation

of the same RNA hairpin molecule in 8 M aq. urea solution
using the NAMD engine. We simulated 48 replicas distributed

over a temperature range −[300 K, 400 K]. The spacing
between the temperatures of each individual replica was chosen
such that there is significant energy overlap between them to
ensure an acceptance ratio of about 20%. Each replica was
simulated at constant volume and temperature (using a
Langevin thermostat) for 30 ns with an exchange attempt
every 2 ps. The overall simulation time was about 1.4 μs. The
final replica trajectories were unshuffled and the trajectory
corresponding to 400 K was chosen for our analysis, as
complete denaturation of the hairpin loop takes place at this
temperature.

4. RESULTS AND DISCUSSION
4.1. Appropriate Descriptors for a RNA Hairpin in 8 M

aq. Urea Solution. The first step of our algorithm involves
specifying a suitable vector basis to describe each snapshot in a
trajectory, consistent with the properties outlined in subsection
2.1. The model system chosen was an RNA hairpin in 8 M urea
solution at 300, 360, and 410 K, respectively. Hydrogen-
bonding and base stacking are the driving forces behind
stabilization of RNA molecules in their native state.94−96 We
calculate interaction energies between each possible base pair,
the self-energy of the backbone using the CHARMM force
field. Urea is a well-known chemical denaturant and has been
shown to assist in the unfolding of proteins and RNA.97−101 It
stabilizes the unfolded structure compared to the native folded
state. In order to incorporate solvent effects into our basis
representation, urea−base, water−base, urea−backbone, and
water−backbone nonbonded interactions were chosen. We
note in passing that we also tried a distance-based vector
representation as that too satisfies properties i, ii, and iii (given
in subsection 2.1). A 12 × 12 matrix D was constructed for each
MD snapshot. Each element Dij represents the distance
between center of geometry of base i and base j. These matrix
elements were then concatenated to give the desired vector
basis for each frame of the trajectory. However, this
representation did not give desirable results. This inaccuracy
can be attributed to the fact that small changes in any matrix
element Dij do not give rise to similar changes along the PES.
For example, if a GUA base flips out, such that the hydrogen
bonding between a GUA-CYT pair and stacking interactions
with adjacent bases get compromised, there will be a
considerable change along the PES.
Assume

′ − = ΔV V (20)

V′ represents the new distance vector basis after the GUA base
flips outside, and V represents the original distance vector basis
before the GUA base flips outside
Now if the RNA molecule is fully unfolded, a same shift in

the basis vector by Δ will lead to a negligible change in the
energy along the PES. This is because once the molecule is fully
unfolded, strong base−base canonical interactions are absent.
This problem does not exist if interaction energies are directly
taken as dimensions of the descriptive vector for each MD
snapshot.
Each MD snapshot is represented by a 93 dimension vector.

The hairpin moiety has 12 nucleobases, which gives rise to 66
dimensions for each possible base-pair combination, 12
dimensions involving nonbonded interactions of urea with
each of the 12 nucleobase and similarly 12 dimensions for
water−base nonbonded interactions. Note that all the solvent
interactions are averaged for every nucleobase. The remaining

Figure 3. Secondary structure representation of the RNA hairpin
moiety that is used as a model system to verify the utility of our
algorithm. The naming convention of the nucleobases adopted in this
paper are illustrated in this figure. Hydrogen bonding and stacking
interactions found in the experimental structure are shown in red and
purple colors, respectively.
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three dimensions come from conformational energy of the
RNA backbone, urea−backbone interactions, and water−
backbone interactions. For the solvent−backbone interactions
(namely, urea−backbone interactions and water−backbone
interactions), the sum total of the nonbonded interactions
(CHARMM all-atom force field) between each solvent atom
and each atom that constitutes the backbone of the RNA
molecule, i.e., alternating sugar and phosphate groups, was
considered. The entire trajectory having N frames can be
represented by N vectors of 93 dimensions each. Figure 4
represents the basis vector representation used for describing
the molecular system. It is trivial to show that such a
representation is consistent with the properties mentioned in
subsection 2.1:
i. Usually, the total potential energy of the system can be

parametrized over its individual bonded and nonbonded
interactions in an additive way. As each dimension of our

basis corresponds to an agglomerative version of these energy
components, the existence a scalar function f:X → Y is
guaranteed. Here, X refers to the vector basis and Y ∈ entire
accessible PES of the system.
ii. The MD force fields typically parametrize every interaction

over the position coordinates X′ of the system, either explicitly
in the case of nonbonded interactions or implicitly in the case
of bonded interactions. It directly follows from this that as
individual energy components are functions of X′, there must
exist a mapping function g:X′ → X, where individual
dimensions of X are coarse-grained versions of these fine-
grained components.
iii. The bonded and nonbonded energy terms of a MD force-

field depend on the relative positions of the participating atoms,
rather than their global coordinates. This ensures that our basis
representation involving force field energies is translational and
rotational invariant.

Figure 4. Each frame in the trajectory is represented by the above vector representation. Each square represents a dimension and is color coded
according to the normalization groups (see subsection 4.1). The atoms represented by the ball-and-stick model denote the interacting entities.
Orange, base−base interaction energy; yellow, backbone conformation energy; light green, base−urea interaction energy; deep green, base−water
interaction energy; light blue, backbone−urea interaction energy; deep blue, backbone−water interaction energy.

Figure 5. Interaction energy vs. time plot for the RNA hairpin system in 8 M aq. urea solution as the unfolding event progresses. (a) RNA backbone
conformational energy, (b) RNA backbone−urea interaction energy, (c) base-pair interaction (CYT-GUA), (d) base−urea interaction (GUA).
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This vector basis is not normalized and can lead to a bias
toward dimensions with larger values during subsequent
clustering. This is because the absolute value of base-pair
interaction energies are on the order of 0−30 kcal/mol, while
the backbone conformational energy is on the order of (1.1−
1.3) × 103 kcal/mol. Similar variation is observed in the base−
solvent and backbone−solvent interaction energies. Intuitively,
the folded state, partially unfolded, and fully unfolded state all
belong to different energy basins. The feature vector associated
with each of these configurations of the RNA molecule will
have maximum variation in the dimensions representing base−
base interactions (hydrogen bonding and stacking) as
compared to changes in the backbone self-energy. Similarly,
base−solvent interactions show most variation compared to
backbone−solvent interactions. Figure 5 shows how different
interactions involving the RNA molecule evolve with time (as
the unfolding event progresses). We perform a min−max
normalization such that all dimensions are within [−1, 1] range.
This is done by dividing the vector into four normalization
groups:
• Dimensions (1−66): base−base interactions
• Dimension (67): self-energy of backbone
• Dimensions (68−91): solvent-base interactions (solvent

includes both urea and water)
• Dimensions (92−93): solvent-backbone interactions
Min−max normalization was applied separately to each of

these groups using the following formula:

′ =
− +

−
y

y2 (max min)
max min (21)

y′ represents the normalized value of that dimension of a given
vector, and y represents the original value of that dimension of
a given vector. The parameters max and min, represent the
maximum and minimum value of all dimensions in that group
from all the vectors in the trajectory, respectively. This
normalization ensures that the clustering algorithm looks at
all dimensions of the feature vector equally.
4.2. Partitioning of the Configuration Space. Having

arrived at a suitable vector description of the system, the next
step involves grouping the conformations into metastable
regions. This is achieved via the clustering algorithm described
in subsection 2.2. Python’s machine learning module scikit-
learn’s t-SNE and DBSCAN implementation85 was used for this
paper. All default parameters were used except the ones
explained below. For all experiments, the perplexity parameter
for t-SNE was set to 40, owing to the highly dense simulation
data. To estimate the eps parameter of DBSCAN, we followed
the method outlined by Savant.73 The fourth nearest neighbor
distance was calculated for all data points in 2D reduced
conformational space. The 99th percentile distance value of this
data set was set as the eps value for that system. For our hairpin
loop RNA system, we used a 100 ps minimum lifetime for
defining a metastable state. How this translates into a minPts
(another DBSCAN hyperparameter) value is explained later.
The metastable states visited by a 300 ns MD run of a RNA

hairpin molecule in 8 M urea at 300 K is depicted in Figure 6a.
The colored structure represents the local minima of each of
these clusters, while the gray structures represent internal
fluctuations within each cluster. This local minimum for each
cluster was determined using the conjugate-gradient descent
minimization module of the NAMD program93 by choosing the
trajectory snapshot closest to the cluster’s “representative
element” as the starting points and running a 20 000 step

minimization. As evident from the figure, there are much fewer
fluctuations from the local minima for each of these clusters. In
a more statistical direction, Figure 6b shows the intracluster
standard deviation in RMSD values for all the identified
metastable clusters for a 300 ns unbiased MD run for the RNA
hairpin loop in 8 M urea and 300 K. For calculating RMSD
values, hydrogen atoms were not considered. For each cluster,
the local minimum was taken as the reference structure. Except
metastable cluster 13, all other states have an intracluster
RMSD standard deviation value less than 1.0 Å. Cluster
number 13 has the highest standard deviation of 1.86 Å and
represents a completely unfolded RNA hairpin molecule.
Fluctuations in the backbone in its unfolded state result in a
negligible traversal along the PES as all stable base-pair
hydrogen bonding and stacking interactions have been
effectively broken. Thus, although the spatial structure has a
comparatively large deviation, the structures are very close in
the PES. The black line at 4.009 Å represents the standard
deviation of the RMSD values for the entire trajectory taken as
a whole (here, the initial native state was chosen as a reference).
As expected, this value is much larger than any intracluster
RMSD standard deviation. These results suggest that our

Figure 6. (a) Select metastable states of RNA hairpin molecule in 8 M
urea at 300 K. The colored structure represents the local minima of
each of these clusters, while the gray structures represent internal
fluctuations within each cluster. (b) σ(Å) refers to the intracluster
standard deviation in RMSD values of all frames that belong to a
certain cluster. For each cluster, the local minimum was chosen as the
reference for calculating the RMSD values. Each bar in the plot
represents a metastable cluster identified by the “probabilistic”
algorithm. The dotted line at 4.01 Å represents the standard deviation
in RMSD values for the entire trajectory. Only one of the clusters
identified has σ(Å) > 1.0 Å, the metastable cluster number 13 (1.86
Å).
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hypothesis that “structures in the same energy basin exhibit
similar structural characteristics” is credible.
To test the quality of our algorithm, we employ the most

probable path (MPP) algorithm introduced by Jain and Stock
to partition the given trajectories into dynamic clusters.23 These
dynamic clusters were treated as the gold standard, and
adjusted mutual information (AMI)102 was used to measure the
quality of clusters obtained from our method. An AMI value of
1.0 represents perfect matching of the two sets of clusters, and a
value of 0.0 denotes that the two sets are dissimilar or similar by
random chance. Refer to subsection S.3 in the Supporting
Information for a short note on the intuition and formula of the
AMI metric. To eliminate ambiguity, we will refer to the
clusters identified by our method as “density clusters” as
opposed to the “dynamic clusters” used for quality evaluation.
As mentioned in subsection 2.2, the memory bottleneck for

our method is the t-SNE algorithm. In the original trajectories,
snapshots were saved every 2 ps. However, for an in-memory
calculation of the similarity matrix (required for the t-SNE
optimization), we skip frames to ensure the number of
snapshots analyzed is about 9000. MPP has no such memory
limitation and so was applied on the entire trajectory. In other
words, the lag time for the MPP Markov chains was taken to be
2 ps for all the experiments. The Qmin parameter of MPP was
set by cross-validation, maximizing the AMI score with the
“density clusters.” Qmin can be thought of as the level of
granularity of these “dynamic clusters.” As our method lacks
any sort of hierarchical clustering, we tune the Qmin parameter
such that the level of description of the PES is similar in both
the methods. A major drawback of the dynamic clustering
method is that it relies on the assumption that intracluster
transitions are more probable than intercluster translations. The
validity of this assumption is directly correlated to the barrier
heights between energy basins along the PES. At higher
temperatures, these barrier heights decrease, allowing the
system to easily sample a wider conformational space. This is
reflected in a lower Qmin value at 360 and 410 K as compared to
300 K. The AMI value, which shows the amount of overlap
between the “density clusters” and the “dynamic clusters,” also
decreases with an increase in temperature: 0.655 at 410 K <
0.774 at 360 K < 0.843 at 300 K. An AMI value of 0.843 at 300
K shows an excellent agreement between the “density clusters”
and the gold standard “dynamic clusters.”
4.3. Comparative Analysis of the Probabilistic Frame-

work with MSMs. The final transition matrix obtained from
the MPP algorithm was processed using the definition of “most
reactive path” in subsection 2.4. In all the systems, the cluster
pertaining to the starting snapshot was taken as the initial node,
and the cluster whose “representative element” had the greatest
SASA (Solvent Accessible Surface Area) was considered to be
the destination node. The pathway predicted by the MPP
algorithm is denoted as the “Markovian” path, and the pathway
predicted by our algorithm (using the method outlined in
subsections 2.3 and 2.4) is referred to as the “probabilistic”
path. Note that while both the “Markovian” and the
“probabilistic” path are evaluated over the same MD trajectory,
the computation of the “Markovian” path utilizes the sequential
information in the simulation, whereas the “probabilistic” path
uses only the spatial information in each frame for its analysis.
Refer to Figure 3 for the naming convention of the nucleobases
used in this subsection.
To meet the memory requirements of the t-SNE

preprocessing step, for the RNA hairpin in 8 M aq. urea

solution at 300 K trajectory, we skip every 16 frames, making
the lag time τ = 32 ps. This translates into a minPts value of 4,
as 4τ = 128 ps. We project both the pathways on a 2D grid with
a number of base pairs and number of bases stacking as the
order parameters, as shown in Figure 7. This 2D representation

can be used to uniquely represent each metastable state as the
RNA hairpin does not contain any internal bulges or loops.
Both the “probabilistic” and the “Markovian” pathway
demonstrate that, at 300 K, the unfolding mechanism proceeds
with unzipping of the stem from the free end. The G1−U12
base pair opens first, followed by the G2−C11 pair. This is
accompanied by a simultaneous destabilization of the hairpin
loop structure with base A8 flipping out and destacking of bases
A6 and A7. From this intermediate state of two open base pairs
from the free end and a destabilized loop structure, the
“probabilistic” pathway predicts a direct transition to a
completely unfolded state. The “Markovian” pathway elucidates
a more fine-grained path with an intermediary jump to a state
with a further unzipping of the stem from the loop end of the
C4−G9 base pair. Figure 7 shows the “representative element”
of each cluster visited by the “most reactive path.” The
“probabilistic” pathway is color coded in blue, while the
“Markovian” pathway is color coded in red.
The input parameters for both the 410 and 360 K trajectories

are taken to be the same, as both these MD simulations are
100-ns-long. From the trajectory data, every six frames were
skipped, making the lag time τ = 12 ps. To ensure a minimum

Figure 7. The “most reactive path” identified by the “probabilistic”
pathway (blue) and the “Markovian” pathway (red). The structures
represented are the “representative elements” of their respective
clusters. Every square in the 2D grid is associated with a particular
metastable state by the order parametersnumber of base stacking
and number of base pairs. This figure corresponds to MD simulation at
300 K.
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lifetime of at least 100 ps, a metastable cluster should have a
minimum of nine points, 9τ = 108 ps. The minPts parameter of
DBSCAN was set to 9. Both pathways highlight a very similar
mechanism in both cases as illustrated in Figures S3 and S4 in
the Supporting Information, for 360 and 410 K, respectively. At
360 K, the “Markovian” pathway again shows a more nuanced
mechanism compared to the “probabilistic” pathway.
Thus, in all three systems, by purely using the spatial

information in the MD trajectories, we were able to
qualitatively reconstruct the most probable path to an
appreciable degree of accuracy. Refer to subsection S.4 in the
Supporting Information for a detailed discussion on the
“quality” of the predicted “probabilistic” paths. This makes
our method suitable for kinetic analysis of trajectories which
involve sampling from a distribution and not explicit integration
of Newton’s equations of motions like hybrid Monte Carlo
methods103 or Replica Exchange Molecular Dynamics
(REMD). The finer details in the “Markovian” path (like
states IV and V in Figure 7) can be attributed to a smaller lag
time (2 ps) used in the construction of the transition matrix in
the MPP algorithm, which does not have the memory
bottleneck t-SNE step.
We analyzed an REMD simulation of the same RNA hairpin

in 8 M aq. urea solution with the framework introduced in this
paper. The “probabilistic” pathway corresponding to a
temperature of 400 K is shown in Figure 8. We used the
same procedure for calculating the input parameters for our
algorithm as explained in the previous sections. Taking memory
constraints into consideration, every two frames were skipped,

making the lag time τ = 4 ps. Consistent with our 100 ps
lifetime requirement for a state to be metastable, the minPts
parameter of DBSCAN for this system was set to 25. For this
system, 69 metastable states or clusters were identified, which is
much larger than the 14 identified for the MD trajectory at 410
K. This is expected as REMD enables the system to explore a
much larger conformational area along the PES as compared to
conventional unbiased MD. Akin to the MD pathway at 410 K,
at 400 K unfolding proceeds by unzipping of the stem from the
free end (opening of the U12−G1 and the C11−G2 base
pairs). This is followed by a destabilization of the loop structure
at an intermediate metastable state with only the G9−C4 base
pair intact. This transitionary state is absent at 410 K, where the
system has enough energy to directly proceed to an unfolded
state.
A common test for Markovianity of a process is the slowest

implied time scale vs lag-time plot. If the system is Markovian,
then after a certain lag time k, the implied time scale must
converge to a constant value independent of the lag time.104

For calculating the implied time scale in REMD simulations,
only the transitions in the unbiased trajectories are counted
(Figure S5). It is evident that while the MD simulation is
Markovian in nature, the REMD simulation is not, possibly due
to insufficient sampling of the interstate transitions, which
makes MSM analysis difficult in the latter case.

4.4. Correctness of the “Widest” Path Hypothesis. In
this subsection, we provide some empirical evidence that our
assumption of the most probable path being the “widest” path
has merit. We show that the “most reactive path” identified for
all three systems, without using any temporal connections
between conformations, also exists in their respective MD
trajectories. We coarse-grain the trajectories as a sequence of
unique clusters. A directed network is created for each
temperature with the metastable states as nodes and directed
edges between them denoting a transition. If the system is in
cluster 1 at time t and in cluster 2 in time t + Δt (with Δt being
the lag time between adjacent frames of the trajectory, or the
integration time step of the MD trajectory, which is 2 ps in this
case), there exists a directed edge from node 1 to node 2 in the
network. The networks for the MD run at 300 K are shown in
Figure 9, the networks corresponding to the other two
trajectories, namely 360 and 410 K, are illustrated in Figures
S6 and S7 in the Supporting Information. The “probabilistic”
path is highlighted by red dotted arrows in all three networks. If
the edge predicted by the “probabilistic” path does not exist in
the network, it is highlighted in blue. At both 360 and 410 K,
the most probable unfolding path predicted exists in the
network. At 300 K, the optimum path identified by our
algorithm deviates slightly by proposing a direct transition
between state 31 and state 13 (blue dotted edge), which is
absent in the trajectory.

5. CONCLUSION
In this study, we propose a novel method for extracting kinetic
information from molecular trajectories without using the
sequential information available in these trajectories. This
method involves four different stages, which enables extraction
of such data starting from a collection of sampled configuration
space points: (a) choosing an appropriate vector representation
for the trajectory; (b) identifying metastable states using PCA,
t-SNE, and DBSCAN; (c) creating a network connecting the
metastable states using EM; and (d) extracting most probable
paths using Dijkstra’s widest path algorithm. In the case of

Figure 8. The “most reactive path” identified by the “probabilistic”
pathway. The structures represented are the “representative elements”
of their respective clusters. Every square in the 2D grid is associated
with a particular metastable state by the order parametersnumber of
base stacking and number of base pairs. This figure corresponds to
REMD simulation at 400 K.
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trajectories from Monte Carlo and REMD simulations,
temporal information is not available, and hence traditional
methods such as MSMs cannot be used. We use two key
assumptions. First, molecular trajectories follow the Markovian
assumption; that is, the system’s current state at time t in its
configuration space solely depends on its previous state at time
t − τ. Second, natural systems evolve gradually over time, i.e., in
a short time τ, a system is most likely to visit energy basins that
are in close proximity to its current energy basin (this includes
staying in its own energy basin). Instead of a hard assignment
(selecting the closest energy basin as the most likely
destination), we adopt a soft assignment protocol and let the
algorithm learn these transitions from the simulation data itself.
This is accomplished using an iterative expectation max-
imization algorithm within the maximum likelihood estimation
framework. As proof of concept, we first show the effectiveness
of our proposed method in unraveling temporal connections
between metastable states that are consistent with those found
in an unbiased MD trajectory of the same RNA hairpin in an 8
M aq. urea system. We then go on to show the utility of our
method in the extraction of a similar temporal pathway in
REMD simulations of the same RNA hairpin molecule. In
theory, this method can be used to analyze trajectories obtained
from any sampling algorithm, be it unbiased MD, REMD,
hybrid Monte Carlo, or Replica exchange umbrella sampling.
This work is an effort in the direction toward harnessing the full
power of enhanced sampling methods, which until now was
mostly limited to evaluating equilibrium properties of the
system.
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