

IIT Hyderabad

Indian Institute of Technology Hyderabad

Introduction

• Over the last decade, deep learning models have been highly successful in solving complex problems. However, the real bottleneck in accepting most of these techniques for real-life applications is the "interpretability problem". • Over the years, three broad approaches towards "Explainable AI" have started to emerge: (i) optimization-based methods [Yosinski et al. 2015]; (ii) attribution-based methods [Sundararajan et al., ICML 2017]; and (iii) supplanting black-box models with more interpretable learning machines [frost et al. 2017]. \clubsuit In this work, we focus on "attribution-based methods". Harnessing theories from causal inference, we show that it is possible to obtain a global picture of a neural network's decision-making process along with local justifications. Our main contributions include: An interpretation of neural network architectures in terms of Structural Causal Models (SCMs). ii. Proposing a method to efficiently calculate interventional expectations, causal attributions and subsequently the causal effect of input neurons on the output. iii. Learning causal regressors to explain neural networks globally. iv. A discussion about the inherent biases prevalent in all current attribution-based methods. Experimental results exhibiting the efficacy of our proposed method. ural Interpretability via Causal Effects \clubsuit This work tries to address the question: "What happens to an output value when one of the input features is changed by an external agent (the user)?" or more generally "What is the causal effect of a particular input neuron on a particular output neuron of the network?". • Given a neural network with l_1 being the set of input features and l_1 being the set of output features, we measure the Average Causal Effect (ACE) of an input feature $x_i \in l_1$ with value α on an output feature $y \in l_1$ l_n as: $ACE_{do(x_i)=\alpha}^{y} = E(y|do(x_i) = \alpha) - baseline_{x_i}$ • In this work, we propose the average ACE of x_i on y as the baseline value for x_i , i.e. $baseline_{x_i} = E_{x_i}(E_v(y|do(x_i) = \alpha))$. In absence of any prior information, we can assume that the "doer" is equally likely to every intervention. perturb x_i uniformly in its range.

Yosinski, Jason, et al. "Understanding neural networks through deep visualization." arXiv preprint arXiv:1506.06579 (2015).

Neural Network Attributions: A Causal Perspective

Aditya Chattopadhyay, Vineeth N Balasubramanian

Visual Learning and Intelligence Lab, Indian Institute of Technology Hyderabad, Near NH-65, Sangareddy, Kandi, Telangana 502285

0.02

to neuron *i* in the input layer. Considering a quadratic approximation around the interventional means,

 $\mu(l_1 - \mu)^T | do(x_i) = \alpha)).$

d-separated from all other input neurons.

V and $v_i \neq v_j P(v_i | do(x_i) = \alpha) = P(v_i)$.

dependent on inputs from timesteps t to $t - \tau$, where τ is given as $E_x(argmax_k(|\det(\nabla_{x^{t-k}}y^t)| > 0))$.

We thank Honeywell Aerospace for helping with the aircraft data and providing funding. We are also grateful to Anirban Sarkar and Kush Motwani for fruitful discussions.

Acknowledgements

time-lag (in seconds)

0 0 0

0.28 0.2 0

0 0	0	0	0	0	0	0	Occluded Feature	Test Error
		0		0		0	2 ($x^2 \sim N(0,0.2)$)	0.01059
0 0	0	0	0	0	0	0	1 $(x^1 \sim N(0, 0.2))$	0.01072
4 input s	6 equer	nce	8		10		0 $(x^0 \sim N(0, 0.2))$	0.01268
input 5	equei						None (Baseline)	0.01059