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v Over the last decade, deep learning models have been highly successful in solving complex
problems. However, the real bottleneck in accepting most of these techniques for real-life
applications is the “interpretability problem”.

v Over the years, three broad approaches towards “Explainable AI” have started to emerge:
(i) optimization-based methods [Yosinski et al. 2015]; (ii) attribution-based methods
[Sundararajan et al., ICML 2017]; and (iii) supplanting black-box models with more
interpretable learning machines [frost et al. 2017].

v In this work, we focus on “attribution-based methods”. Harnessing theories from causal
inference, we show that it is possible to obtain a global picture of a neural network's
decision-making process along with local justifications. Our main contributions include:
i. An interpretation of neural network architectures in terms of Structural Causal

Models (SCMs).
ii. Proposing a method to efficiently calculate interventional expectations, causal

attributions and subsequently the causal effect of input neurons on the output.
iii. Learning causal regressors to explain neural networks globally.
iv. A discussion about the inherent biases prevalent in all current attribution-based

methods.
v. Experimental results exhibiting the efficacy of our proposed method.

Introduction

v Definition 2.1 (Structural Causal Models). A Structural Causal Model (SCM) is a 4-tuple !, #, $, %& where,
i. ! is a finite set of endogenous variables, usually the observable random variables in the system;
ii. # is a finite set of exogenous variables, usually treated as unobserved or noise variables;
iii. $ is a set of functions [$(, $), … . $,], where . refers to the cardinality of the set !. These functions define causal mechanisms, such that ∀ 01 ∈

!, 01 = $1(%56, 7_9). The set %56 is a subset of ! − {01} and ∀ 71 ∈ #. We do not consider feedback causal models here;
iv. %& defines a probability distribution over #.

v An SCM @(!, #, $, %&) can be trivially represented by a directed graphical model A = B, # where the vertices B represent the endogenous variables
! (each vertex C1 corresponds to an observable 01). The edges D denote the causal mechanisms $. Such a graph is called a causal Bayesian network.
The distribution of every vertex in a causal Bayesian network depends only upon its parent vertices (local Markov property).

v Proposition 1. Two random variables 5 and E are said to be conditionally independent given a set of random variables F if they are d-separated in the
corresponding graphical model A.

v Definition 2.2 (d-separation). Two vertices CG and CH are said to be d-separated if all paths connecting the two vertices are “blocked” by a set of random
variables F.

v A path is said to be “blocked" if either (i) there exists a collider that is not in I.J(F), or, (ii) there exists a non-collider v ∈ Z along the path. I.J(F) is
the set of all vertices which exhibit a directed path to any vertex v ∈ Z. A directed path from vertex C1 to CK is a path such that there is no incoming edge
to C1 and no outgoing edge from CK.

Preliminaries

v Proposition 2. An L − L5MN6 feedforward neural network O (L(, L), … L,) with L1 denoting the set of neurons in layer 9 has a
corresponding SCM @(L( + L) + … .+ L,, #, $( + $) + ⋯ $,, %&), where L( refers to the input layer and L, refers to the
output layer. Corresponding to every L1, $1 refers to the set of causal functions for neurons in layer 9.

v Corollary 2.1. Every L − L5MN6 feedforward neural network O (L(, L), … L,) , with L1 denoting the set of neurons in layer 9,
with a corresponding SCM @(L( + L) + … .+ L,, #, $( + $) + ⋯ $,, %&), can be reduced to an SCM @′(

)
L( +

L,, #, $S, %& by marginalizing out the hidden neurons.

Neural Networks as SCMs 

v This work tries to address the question: “What happens to an output
value when one of the input features is changed by an external agent
(the user)?” or more generally “What is the causal effect of a particular
input neuron on a particular output neuron of the network?”.

v Given a neural network with L( being the set of input features and L,
being the set of output features, we measure the Average Causal Effect
(ACE) of an input feature 01 ∈ L( with value T on an output feature y ∈
L, as:

IVDWX YZ [\
] = E(M|`a(01) = T) − E5bNL9.NYZ

v In this work, we propose the average ACE of 01 on M as the baseline
value for 01, i.e. E5bNL9.NYZ = DYZ(Dc y do xg = T . In absence of any
prior information, we can assume that the "doer" is equally likely to
perturb 01 uniformly in its range.

Neural Interpretability via Causal Effects

v Given a neural network, the output neuron M can be expressed as the causal mechanism $]S(0(, 0), … , 0h), where 01 refers
to neuron 9 in the input layer. Considering a quadratic approximation around the interventional means,

E $]|WX(YZ)[\
S L( − i + i 01 = T) = $]S i(, i), … , ih + j6(∇)$]S i(, i), … , ih . E((

)
L( −

i L( − i l| `a(01) = T)).
v Proposition 3. Given an l-layer feed forward neural network O (L(, L), … L,) with ) with L1 denoting the set of neurons in
layer 9 and its corresponding reduced SCM ) with L1 denoting the set of neurons in layer 9, the intervened input neuron is
d-separated from all other input neurons.

v Corollary 3.1. Given an l-layer feedforward neural network O (L(, L), … L,) with L1 denoting the set of neurons in layer
9 and an intervention on neuron 01, the probability distribution of all other input neurons does not change, i.e. ∀CK ∈
B 5.` C1 ≠ CK % CK `a(01) = T) = %(CK).

v Note that here we have assumed causal independency between different input neurons of a feed forward network. This is
violated in time-series models or sequence prediction tasks, in that case we have to iterate over the entire training data for
every intervention.

v Proposition 4. Given a recurrent neural function, unfolded in the temporal dimension, the output at time t will only be
dependent on inputs from timesteps t to n − o, where o is given 5b DY(56pq50h(| det ∇YtuvM

w | > 0)).

Calculating Interventional Expectations

v The interventional expectation E(M|`a(01) = T will only be a
function of 01 as all the other variables have been marginalized
out.

v We assume this function to be a member of the polynomial class
of functions {$ | $(01) = ∑K

X{W|{}K01
K}. Bayesian model

selection was employed to determine the optimal order of the
polynomial that best fits the given data by maximizing the
marginal likelihood.

v Calculating interventional expectations for multiple input values
is a costly operation. Learning the function, termed as causal
regressors, allows one to estimate these values on-the-fly for
subsequent attribution analysis.

v Furthermore, inspecting the nature of these causal regressors can
give valuable insights into the global workings of the neural
network.

Causal Regressors

v Attribution methods are concerned with unravelling the importance of a particular input feature on the
output of a network. Initial attempts involved perturbing regions of the input via occlusion maps or
inspecting the gradients of an output neuron with respect to an input neuron.

v However, the unidentifiability of “source of error” is a central impediment to designing attribution
algorithms for black-box deep models. It is impossible to distinguish whether an erroneous heatmap
(given our domain knowledge) is an artifact of the attribution method or a consequence of poor
representations learnt by the network. This resulted in development of newer methods guided by
certain axioms: (i) Conservative (ii) Sensitivity, (iii) Implementation Invariance, (iv) Symmetry
preserving, and (v) Input Invariance. Despite these axioms, the proposed methods are not really causal
in nature.

v For example, consider the integrated gradients method. While this method satisfies the axioms, there
exists an implicit bias in the attribution values (variable importance) obtained. Consider the function
$ 5, E = 5. E , and two input vectors 9( = [3,5] and 9) = 3,100 .Integrated gradients assign
attributions to [5, E] as [3.4985, 7.4985] for input 9( and [50.951, 244.951] for input 9).

v This is an implicit bias which occurs because of not marginalizing other input variables while
computing the attribution of 5. Most current attribution methods are based on the gradient and suffer
from this bias.
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Experiement – Toy dataset Experiements – Airplane Data (NASA)

Occluded Feature Test Error

2 (0) ~ O(0,0.2)) 0.01059

1 (0( ~ O(0,0.2)) 0.01072

0 (0á ~ O(0,0.2)) 0.01268

None (Baseline) 0.01059
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