
Learning Graph Variational Autoencoders with Constraints and Structured

Priors for Conditional Indoor 3D Scene Generation

Aditya Chattopadhyay1*, Xi Zhang2, David Paul Wipf2, Himanshu Arora2, and René Vidal2
1Johns Hopkins University, MD, USA, 2Amazon.com, Inc.

achatto1@jhu.edu, {xizhn, daviwipf, arorah, rvidal}@amazon.com

Abstract

We present a graph variational autoencoder with a struc-
tured prior for generating the layout of indoor 3D scenes.
Given the room type (e.g., living room or library) and the
room layout (e.g., room elements such as floor and walls),
our architecture generates a collection of objects (e.g., fur-
niture items such as sofa, table and chairs) that is consis-
tent with the room type and layout. This is a challenging
problem because the generated scene needs to satisfy mul-
tiple constrains, e.g., each object should lie inside the room
and two objects should not occupy the same volume. To ad-
dress these challenges, we propose a deep generative model
that encodes these relationships as soft constraints on an
attributed graph (e.g., the nodes capture attributes of room
and furniture elements, such as shape, class, pose and size,
and the edges capture geometric relationships such as rel-
ative orientation). The architecture consists of a graph en-
coder that maps the input graph to a structured latent space,
and a graph decoder that generates a furniture graph, given
a latent code and the room graph. The latent space is mod-
eled with autoregressive priors, which facilitates the gener-
ation of highly structured scenes. We also propose an effi-
cient training procedure that combines matching and con-
strained learning. Experiments on the 3D-FRONT dataset
show that our method produces scenes that are diverse and
are adapted to the room layout.

1. Introduction

The last few years have seen significant advances in im-
age generation powered by the emergence of deep genera-
tive models such as GANs [11] and VAEs [16]. State-of-
the-art methods are able to generate images of a single ob-
ject category (e.g., faces) with amazingly realistic quality
(e.g., [14, 36]). However, the problem of generating images
of complex scenes composed of multiple objects in diverse
arrangements remains a challenge. As an example, images

*This work was done during Aditya’s internship with Amazon.

of indoor scenes consist of room elements (floor, walls, etc.)
and furniture items (table, chairs, beds, etc.) arranged in dif-
ferent ways depending on the room type (living room, bed-
room, etc.). Moreover, room elements and furniture items
should satisfy geometric constraints, e.g., each object must
lie inside the room and on the floor, two objects cannot oc-
cupy the same volume, some objects tend to co-occur in
particular orientations relative to the room layout.

To address some of the challenges, recent work on in-
door scene image generation [10] uses GANs with multiple
discriminators that specialize in localizing different objects
within an image. By adding a “broker” to mediate among
such discriminators, [10] achieves state-of-the-art (SOTA)
results on synthesizing images of living rooms. However,
such SOTA image generation models are far from capturing
the rich structure present in indoor scenes. For example,
[26] notice that these models fail to respect the relation-
ships between scene objects and often cannot preserve cer-
tain shapes like axis-aligned polygons. We contend that ad-
dressing such complex image generation problems requires
reasoning about the scene content in 3D space.

As a stepping stone, this paper focuses on the problem of
conditional generation of the scene’s 3D layout, rather than
a 2D image, though we can synthesize images using a ren-
derer given the layout. Specifically, we assume we are given
the room type (e.g., living room or bedroom) and the room
layout (spatial arrangement of walls, windows and doors),
and our goal is to generate a collection of furniture items
(e.g., sofa, coffee table and chairs) that is consistent with
the room type and layout. For example, a bedroom must
consist of a bed, typically placed in the center of the longest
wall in the room. Moreover, we expect the generator to syn-
thesize diverse object arrangements for the same room. This
problem of conditional 3D layout generation is important in
applications such as room decoration, where the goal is to
produce diverse decors for a given room.

Recent work [2, 40, 15] aims to address this problem us-
ing supervision in the form of scene hierarchies or relational
graphs. However, the contextual space of possible arrange-
ments of objects in a room is simply too large to be modeled

785



using hand-crafted heuristics or hierarchies. This has led to
recent efforts on training networks directly from data using
autoregressive models based on CNNs [33] or Transformers
[41, 27]. However, while these models are adept at generat-
ing indoor scenes, they lack the advantages of a learnt latent
space such as that of Variational Autoencoders (VAEs).

One advantage of using learnt latent variables is that they
allow for more controlled generations. For example, users
can traverse the latent space to manipulate generated sam-
ples [12, 20] (see Figure 4). Such manipulations are not
easy to implement in autoregressive models which lack ex-
plicit modelling of a latent space. Another advantage of
using learnt latent variables is that they are often a good
representation of data which can be used to bootstrap sev-
eral downstream applications. In this work, we show one
such application of furniture recommendation given a floor-
plan by retrieving the most “appropriate” furnished room
from a database curated by human designers and adapting it
to the new floorplan. In this case, the learnt latent represen-
tation is used for solving the retrieval problem. However,
despite these advantages, we found in our experiments that
existing graph-based VAE architectures are insufficient for
indoor scene generation. This observation is echoed by Para
et al. [26] in their work on 2D layout generation, where they
conjecture that current VAE architectures struggle with the
discrete nature of graphs and layouts.
Paper contributions. To remedy this, we propose a graph-
based VAE model for the synthesis of 3D indoor scenes con-
ditioned on the room type and layout (floorplan). We repre-
sent both the room and furniture layouts with an attributed
graph. We then present a scene generative model consisting
of a graph encoder that maps the input graph and the room
type to a latent space, and a graph decoder that generates
a furniture graph, given a latent code and the room graph.
Our model considerably reduces the performance gap be-
tween VAEs and state-of-the-art autoregressive models [27]
for indoor scene synthesis. Specifically, we make the fol-
lowing contributions:

1. A structured autoregressive prior for graphs:1 This is
our main contribution. Contemporary graph-VAE archi-
tectures typically encode the graph into a single latent
vector and use a multi-layered perceptron (MLP) to de-
code it back to a graph [34, 17]. In contrast, we propose
to have a separate latent code for each furniture item.
While the use of an i.i.d. Gaussian prior for each latent
code had been previously explored in [24], this limits
performance since the graph decoder struggles to learn
complex relationships between different furniture nodes

1Note the use of the term autoregressive here does not refer to autore-
gressive models which is a type of generative model which generates the
scene iteratively, one furniture at a time by learning the conditional distri-
bution of furniture given the scene rendered so far. The usage here refers to
the prior distribution in a VAE which is autoregressive in the latent space.

from i.i.d. latent codes.2 Instead, we propose a novel
autoregressive prior based on linear Gaussian models
which allow for learning a dependency structure among
different latent variables.

2. Learning graph-VAEs with autoregressive priors under
constraints: To learn our structured graph-VAE model,
we propose an efficient way to compute the KL diver-
gence term in the VAE objective which requires a match-
ing procedure since there is no canonical ordering of
graph nodes. To facilitate learning, we use simple in-
tuitive constraints like limiting the relative distances be-
tween furniture items, such as a chair and a table. These
can be easily computed from training data. We then train
our graph-VAE model under these constraints utilizing a
recently introduced constrained learning framework [4].

3. Experimental evaluation: Our quantitative and quali-
tative experiments show that our method outperforms
state-of-the-art graph VAE architectures, bridging the
performance gap between latent-variable models and au-
toregressive models for the task of 3D scene synthesis.
Moreover, we show a unique application of our latent-
variable model which is not possible with autoregressive
models. Finally, we show how one can edit the generated
scenes post-hoc by traversing the latent space.

2. Related Work

Graph-based inference. Graphical representation of
scenes and graph-based inference have been extensively
studied in the past. Early works [7, 8, 42, 13, 31] em-
ployed “shallow” methods like hand-crafted graph kernels
or probabilistic graphical models to learn the furniture ar-
rangements. Recent works leverage deep generative mod-
els to learn good scene representations directly from spatial
data. The community has explored avenues for combining
graphs with VAEs to synthesize 3D scenes [23, 43, 24].
However, all these methods rely on strong heuristics on
defining object relations. For instance, [24] relies on user-
defined scene-graphs as input, [23] requires hand-crafted
hierarchies, and [29] uses heuristics to extract context-free
grammars from data which are then used to train a grammar-
VAE [21]. Our proposed VAE (inspired from [25]) is differ-
ent from all these methods in that we do not use any such
strong heuristics on object relations, but only a check of as-
sociation between a furniture item and a room element using
a distance measure. On the other hand, Wang et al. [39] uses
graphs for high-level planning of the furniture layout of the
room in a 2-stage approach where they train a generator to
synthesize scene graphs followed by a CNN to propose con-
sistent furniture poses. Their model has no latent variables
and is slower due to the 2-stage process.

2This is corroborated by our experiments in §4 where we consider this
architecture as Baseline B1.

786



Autoregressive scene generation. Recent successful mod-
els for indoor scene synthesis are all autoregressive in nature
[40, 33, 41, 27]. Wang et al. [41] introduced an autoregres-
sive scene generation pipeline called Sceneformer, which
uses multiple transformers [37] to predict the objects’ cate-
gory, location and size separately. Concurrently, FastSynth
[33] introduced a similar pipeline, where the authors train
separate CNNs based on a top-down representation of the
scene to sequentially insert objects into the scene. Their
method however requires auxilary supervision in the form
of depth and semantic segmentation maps. Another recent
transformer-based autoregressive approach was proposed in
[27], which replaces the multiple trained models of past
works with a single unified model. Unlike these models,
we learn an end-to-end latent variable model to generate 3D
indoor scenes trained from spatial data.
Expressive latent distributions for VAEs. There has been
extensive work into designing expressive distributions for
VAEs. For example, [19] proposes a hierarchical prior, [32]
uses normalizing flows to model a more expressive pos-
terior distribution over latents, [6] uses an autoregressive
prior, and [35] advocates the use of a mixture distribution
for the prior based on the posterior distribution of the en-
coder. However, learning expressive distributions for latent
spaces which are expressed as graphs is challenging due to
the absence of any canonical ordering between the different
nodes of a graph. This makes computing the required KL
divergence term in the ELBO notoriously difficult. In this
work we propose to model the latent space as an autoregres-
sive linear Gaussian model, which allows us to formulate
the ordering as a quadratic assignment problem for which
we also propose an efficient approximation.

3. Our Approach

This section describes the proposed model. First, we de-
scribe how we represent the 3D scene layout with an at-
tributed graph. Next, we describe our architecture. The
VAE encoder is a Graph Neural Network (GNN) that pro-
cesses the graph and produces latent variables which are
then passed to another GNN which serves as the VAE de-
coder. Then, we describe how we parameterize the prior
on the latent space using an autoregressive model which is
learnt. Finally, we describe the proposed training method-
ology, which includes some constraints for faster conver-
gence. A schematic depiction of our approach is given in
Figure 1a with more details in the Appendix.

3.1. Indoor scene representation as a graph

We represent an indoor scene as an attributed graph
G = (V, E, X). Here the nodes V denote room layout com-
ponents (floor, wall, windows) and furniture items (sofa,
chair, bed), the edges E ✓ V ⇥ V denote relationships be-
tween the nodes (e.g., relative orientation of sofa to wall),

Figure 1. (a) Overview of the proposed model. The input scene
graph includes the furniture and room sub-graphs and is complete
(we omit depicting certain edges to prevent clutter). The Encoder
predicts a mean and variance per furniture node, which are then
used to sample latents for proposing furniture nodes by the de-
coder. During inference we use the proposed autoregressive prior
to generate the latents, which are then subsequently processed by
the decoder for scene synthesis; (b) Generated scenes. Sample
generations for our model for a bedroom (row 1) and a library
(row 2). Green rectangles indicate doors while blue rectangles in-
dicate windows

and the attributes X denote features associated with the
nodes and edges (e.g., location of furniture items or rel-
ative orientation between bed and wall). The graph has
two node types (room nodes VR, furniture nodes VF ), three
edge types (room-room edges ERR, room-furniture edges
ERF and furniture-furniture edges EFF ), and five attribute
types corresponding to these node and edge types (XR, XF ,
XRR, XRF and XFF ). In this work, we consider the graph
as complete, that is, ERF = VR ⇥ VF , EFF = VF ⇥ VF

and ERR = VR ⇥ VR.
We will identify two main subgraphs of G. The room

layout graph GR = (VR, ER, XR, XRR) consists of nR :=
|VR| nodes (or room elements) and eR := |ER| edges,
where the node attributes XR 2 RnR⇥dR denote the class,
location, orientation and size of the room element, and
the edge attributes XRR 2 ReR⇥dRR encode geometric or
functional relationships between two room elements (rela-
tive location, relative orientation etc.). Similarly, the furni-
ture layout graph GF = (VF , EF , XF , XFF ) consists of
nF := |VF | nodes (or furniture items) and eF = |EF |
edges, where the node attributes XF 2 RnF⇥dF denote
the class of the furniture item, its location, orientation,
size, and its 3D shape descriptor, and its edge attributes
XFF 2 ReF⇥dFF encode geometric or functional relation-

787



ships between two furniture items. We obtain the shape de-
scriptors of each furniture item by processing their 3D point
clouds through PointNet [30] pretrained on ShapeNet [5].
The room type T is given as input to the graph encoder as a
categorical variable.

3.2. Proposed Generative Model

We would like to design and learn a probabilistic model
p(GF | nF , GR, T ) that generates a furniture layout GF

given the number of furniture items nF , the room layout
GR and the room type T (say, bedroom or library room).
We assume there exists a latent variable Z such that

p(GF | nF , GR, T ) =
Z

p(GF | Z, nF , GR, T )p(Z | nF , GR, T )dZ.
(1)

Our proposed model consists of three main ingredients:

1. An encoder, q�(Z | nF , G, T ), which maps the number
of furniture items, the room and furniture layouts (GR

and GF resp.) and the room type to a latent variable
Z, which captures the diversity of room-aware furniture
layouts. The parameters of the encoder are denoted as �.

2. A decoder, p✓0(GF | Z, nF , GR, T ), which maps the la-
tent variable, the number of furniture items as well as the
room layout and type to a furniture layout. The parame-
ters of the decoder are denoted as ✓

0.

3. A prior model p✓00(Z | nF , GR, T ). The difference be-
tween the prior model and the encoder is that the prior
model only considers the room layout GR and not G.
The parameters of the prior model are denoted as ✓

00.

The encoder, decoder and prior model are parameterized
with GNNs which we will describe in the next paragraphs.
Graph encoder. The encoder models the approximate pos-
terior of a latent variable Z given (nF , G, T ). We assume
that the distribution of Z, q�(Z | nF , G, T ), is Gaussian
with mean µ�(nF , G, T ) and a diagonal covariance matrix
with diagonal entries ��(nF , G, T ). The distribution pa-
rameters (µ�, ��) are modeled as the output of an attention-
based message passing graph neural network (MP-GNN)
with weights �. The design of the MP-GNN is inspired by
[25], where each layer l = 1, . . . , L of the MP-GNN maps
a graph G

l�1 to another graph G
l by updating the graph’s

node and edge features. Specifically, let h
l
i and h

l
ij denote

the features of node i and edge (i, j) of graph G
l, respec-

tively. Let the input to the network be the graph G
0 = G,

so that h
0
i and h

0
ij denote the node features (rows of XR

and XF ) and edge features (rows of XRR, XFF and XRF ),
respectively. At each iteration of node and edge refine-
ment, the MP-GNN updates both node and edge features as
a function of their features and neighboring features in the

previous layer using an attention mechanism that depends
on the node and edge type. More details on the specific
update functions used are given in Appendix §A.2.1.

After L layers of refinement, we obtain a graph G
L

whose node features are mapped via a linear layer with
weights Wµ, W� to obtain the parameters of the Gaussian
model as µ

i
�(G, T ) = Wµh

L
i , �

i
�(G, T ) = exp(W�h

L
i )

where i = 1, . . . , nF . Note that there is a different Gaus-
sian for each node of the graph. Therefore, the output of
the encoder will be two matrices µ�(G, T, S) 2 RnF⇥dF

and ��(G, T, S) 2 RnF⇥dF corresponding to the mean
and standard deviation vectors of the latent variable matrix
Z 2 RnF⇥dF .
Graph decoder. The decoder maps (Z, nF ) and the room
layout and type (GR, T ) to a desired furniture layout via the
distribution p✓0(GF | Z, nF , GR, T ). The generative pro-
cess proceeds as follows. First, an initial fully connected
furniture graph G

0
F is instantiated. Each node of G

0
F is

associated with a feature of dimension dF corresponding
to one of the rows of Z. Each edge (i, j) of G

0
F of type

✏ 2 {RF, FF} is associated with a feature Zij = (Zi, Zj)
as the concatenation of the node features. As a result, we
obtain an initial graph G0 that includes both the initial fur-
niture graph G

0
F as well as the given room graph GR as

subgraphs. The initial graph G0 is then passed to an MP-
GNN, which follows the same operations as the encoder
MP-GNN. The output of the MP-GNN is the furniture sub-
graph G

L
F . Each furniture node of G

L
F is then individually

processed through an MLP to produce parameters for the
furniture layout graph distribution p✓0(GF | Z, nF , GR, T ).
We assume that this distribution can be factorized as:

p✓0(GF | Z, nF , GR, T ) (2)

=
nFY

i=1

p✓0(shapei | Z, GR, T )p✓0(orieni | Z, GR, T )

p✓0(loci | Z, GR, T )p✓0(sizei | shapei)p✓0(cati | shapei),

where shapei, orieni, cati denote features of furniture i.
More specifically, we assume that given latent Z, room lay-
out GR and type T , the furniture items are independent of
each other. For each furniture item, we further assume that
shape, orientation and location features are conditionally in-
dependent. However, since the PointNet shape features im-
plicitly capture the furniture’s 3D configuration, we condi-
tion the size and category distributions on this shape feature.

We parameterize the shape and location features as a nor-
mal distribution, the size feature as a lognormal distribution
(since size is always positive), and category and orientation
features as categorical distributions. Since both the Encoder
and Decoder graphs have nF nodes that are in one-to-one
correspondence, we can define our reconstruction loss (first
term in (9)) by simply comparing their node features with-
out the need for an explicit matching procedure.

788



Graph prior. Recall our latent space Z is modelled such
that there is a latent variable corresponding to each furniture
node in the graph. Many popular graph VAE models assume
an i.i.d. normal prior for each node [18, 24]. However, such
a model is restrictive for our purposes. MP-GNNs achieve
permutation equivariance by sharing the weight matrices
across every node in the graph. When the graph is com-
plete, as is the case here, the marginal distribution of every
output node after L GNN layers will be identical if they are
initialized as i.i.d. Gaussian at the input layer. Since, the
output nodes of the decoder GNN after L layers correspond
to different furniture features, having identical marginals is
detrimental. This claim is supported by experiments (Fig-
ure 2) where the i.i.d. prior baseline models struggle to learn
proper furniture placements. To remedy this, we propose to
parameterize prior distribution as an autoregressive model
based on linear gaussian models [3]. More specifically,

p(Z0 | GR, T )=N (µ✓00(GR, T ), �0
✓00(GR, T )), (3)

p(Zi|Zk<i
, GR, T )=N (

X

k<i

A
k
✓00(GR, T )Zk

, �
i
✓00(GR, T )).

where Z
i refers to the latent corresponding to the i

th furni-
ture node. Thus, the i

th furniture node latent is given by a
Gaussian whose mean is a linear function of all the latents
k < i. Such a structure ensures that all the latent variables
are jointly Gaussian. This allows us to analytically com-
pute the KL divergence term and thus was favoured over
more expressive probabilistic models which would intro-
duce more stochasticity in the objective due to the need of
estimating the KL divergence term via sampling. We im-
plement (3) (see also Figure 1) with two networks:

• Room Aggregator for p(Z0 | GR, T ): The room ag-
gregator is an MP-GNN with the same architecture as the
Graph Encoder, except that the input to the network is
just (GR, T ) with the node and edge features initialized
to XR and XRF , respectively. After L GNN layers, all
the room node features are aggregated by a mean pooling
operation to obtain a global representation of the room
layout plan X

agg
R . This X

agg
R is then passed through an

MLP to compute µ✓00(GR, T ) and �
0
✓00(GR, T ).

• RNN Prior for p(Zi|Zk<i,GR, T ): We use a recurrent
neural network to predict the matrix A

k
✓00(GR, T ) and the

variance �
i
✓00(GR, T ) at each node index. The RNN is

initialized with X
agg
R . We need additional constraints on

each A
k
✓00(GR, T ) to prevent the dynamics model in (3)

from diverging to infinity. This is typically done by con-
trolling the spectral radius or its proxy, the spectral norm
[22], of the matrices {Ak

✓00(GR, T ) : k 2 [1, 2, ..., nF ]}.

Thus, the predicted matrix is taken to be Ak
✓00 (GR,T )

||Ak
✓00 (GR,T )||2

,
where ||A||2 is the spectral norm of some matrix A.

3.3. Computing the KL term via matching and con-

strained learning

Note that the proposed autoregressive prior could in prin-
ciple be re-expressed as a more traditional i.i.d. Gaussian
prior, which is then passed through additional transforma-
tion layers that are not permutationally equivariant. While
these additional layers could be absorbed into the decoder,
the lack of equivariance would pose key challenges during
training, as there is no longer a canonical ordering of the
graph nodes. On the other hand, for the proposed autore-
gressive prior formulation, such an ordering is only required
to compute the KL divergence term in the ELBO (9), which
requires evaluating p✓00(Z | GR, T, nF ) for any Z sampled
from the posterior q�(Z | G, T, nF ). By design, the KL di-
vergence term can be expressed analytically and, as we will
soon demonstrate, a compensatory permutation can be effi-
ciently computed. In contrast, with an alternative decoder
formulation (based on the additional transformation layers),
the search for an appropriate ordering is instead needed for
computing the VAE reconstruction term (i.e., evaluating the
decoder p✓0(GF | Z, nF , GR, T ) for any Z sampled from
the posterior). The computation of this ordering would typ-
ically not be analytically tractable and further approxima-
tions would be required to evaluate this reconstruction term.
Computing the KL divergence term. Let us denote the set
of latent variables corresponding to nF furniture items to be
placed in the room as Z = {Z1

, Z
2
, ..., Z

nF }. Let ⇡ denote
the ordering among these variables. Given ⇡, the likelihood
of observing Z under our proposed prior is defined as

p✓00(Z |nF , GR, T ; ⇡)=
nFY

i=1

p✓00(Z⇡(i) |{Z⇡(j)}j<i, GR, T ),

(4)
However, for Z ⇠ q�(Z | nF , G, T ) (the approximate pos-
terior) we do not know this ordering ⇡. Thus, given Z, we
define the optimal order ⇡

⇤ as

argmin
⇡

KL(q�(Z |nF , G, T )||p✓00(Z|nF , GR, T ; ⇡)) . (5)

Recall q�(Z | nF , G, T ) =
QnF

i=1 N (Zi; µi
�(G), �i

�(G)).
Since both the prior and posterior are jointly Gaussian, com-
puting (5) reduces to solving a Quadratic Assignment Prob-
lem (QAP). For simplicity let us denote the distributions as

q�(Z | nF , G, T ) = N (µ0, ⌃0)

p✓00(Z | nF , GR, T ; ⇡) = N (⇡̃µ1, ⇡̃⌃1⇡̃
T ),

(6)

where µ0, µ1 2 RnF dF , ⌃0, ⌃1 2 RnF dF⇥nF dF , ⇡̃ =
⇡ ⌦ IdF⇥dF and dF is the dimension of the latent variable
used for each furniture node. Note ⇡ 2 RnF⇥nF and the
Kronecker product comes from the fact that we are only
allowed to permute blocks of µ1 and ⌃1 of size dF and
dF ⇥dF , respectively. In other words, we can only permute

789



Figure 2. Qualitative comparison of our method with ATISS and baselines. The encoder-decoder architecture is the same for our method
and baselines. Moreover, all three VAE methods have a separate latent code for each furniture but differ in the prior distribution employed.
Baseline 1 uses an i.i.d. standard Gaussian prior. Baseline 2 uses the same i.i.d. Gaussian prior but with mean and variance parameters
depending on the room subgraph. Ours uses an autoregressive prior. Windows and doors and indicated by white rectangles.

latent vectors corresponding to furniture nodes as a whole
and not the intra dimensions of Z within any furniture node.
Note that due to the autoregressive structure ⌃1 will not be
a diagonal matrix.

We show in the Appendix A.4.1 that (5) is equivalent to

min
⇡

Tr
�
⌃�1

1 ⇡̃
T
⇥
⌃0 + µ0µ

T
0

⇤
⇡̃
�
� 2Tr

�
⇡̃

T
µ0µ

T
1 ⌃�1

1

�
.

(7)
Notice that (7) is a Quadratic Assignment Problem (QAP)
which is known to be NP-Hard. For this we propose to use
a fast approximation algorithm, called FAQ, introduced in
[38]. FAQ first relaxes the optimization problem from the
set of permutation matrices to the set of doubly stochastic
matrices. It then iteratively proceeds by solving lineariza-
tions of the objective (7) using the Franke-Wolfe method.
These linearizations reduce the QAP to a linear assign-
ment problem (LAP), which can be efficiently solved by
the Hungarian algorithm. After Franke-Wolfe terminates,
we project the doubly stochastic solution back to the set of
permutations by solving another LAP. FAQ has a runtime
complexity that is cubic in the number of nodes per iteration
which is faster than the quartic complexity of the matching
procedure used in [34]. See Appendix A.4.2 for details.

We need to compute the optimal ⇡
⇤ for each graph in a

mini-batch, and then compute the KL divergence term in (9)
analytically given this ordering. We observe no significant
gains in performance in running the FAQ algorithm more
than 1 step per graph, which further speeds our method.
Learning under constraints: To facilitate faster conver-
gence and also ensure fidelity of the learned solution, we en-
force certain constraints on the reconstructed room. These
constraints are derived from training data and do not require
external annotations. Given input furniture graph GF to the

encoder and the reconstructed graph G̃F by the decoder,
we enforce the relative positions of predicted furnitures in
G̃F to be “close” to the ground truth relative positions in
GF . Similarly, we apply constraints on the relative position
of the predicted furniture items with the room walls, win-
dows and doors. Finally we apply a constraint penalizing
the relative orientations between different furniture items
from being too “far” away from the relative orientations in
G. We explain these constraints more clearly in Appendix
A.5. In practice, we observe that employing constraints en-
able faster training. This is depicted in Figure 5 (Appendix).

3.4. Training

Having described all the ingredients of our model, we
now present our learning procedure. Given a training set,
consisting of indoor scenes in the form of attributed graphs
G = {G1, G2, ..., Gn}, we learn the parameters {✓0, ✓00, �}
by optimizing the following empirical average over the
training set subject to constraints:

max
✓0,✓00,�

1

n

nX

i=1

L (Gi, ✓
0
, ✓

00
, �) s.t.

1

n

nX

i=1

Constr(Gi)  ✏,

(8)

where, for any G 2 G, L (G, ✓
0
, ✓

00
, �) denotes the Evi-

dence Lower Bound (ELBO) defined as:

L (G, ✓
0
, ✓

00
, �)

= EZ⇠q�(Z|nF ,G,T )[log p✓0(GF | Z, nF , GR, T )]

� KL(q�(Z | nF , G, T ) || p✓00(Z | nF , GR, T )).

(9)

In (8), ✏ is a user-defined hyperparameter that determines
how strictly the constraints are enforced. We solve (8) us-
ing the learning under constraints framework introduced by

790



Empty Room Layout
<latexit sha1_base64="m2hUtA69YDIW92+oykCmvWKJwG0=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KkkR9Vj0oMcq9gPSUDabTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZemApuwHW/nZXVtfWNzdJWeXtnd2+/cnDYNirTlLWoEkp3Q2KY4JK1gINg3VQzkoSCdcLRzdTvPDFtuJKPME5ZkJCB5DGnBKzk94CLiOW3k/5Dv1J1a+4MeJl4BamiAs1+5asXKZolTAIVxBjfc1MIcqKBU8Em5V5mWEroiAyYb6kkCTNBPjt5gk+tEuFYaVsS8Ez9PZGTxJhxEtrOhMDQLHpT8T/PzyC+CnIu0wyYpPNFcSYwKDz9H0dcMwpibAmhmttbMR0STSjYlMo2BG/x5WXSrte8i1r9/rzauC7iKKFjdILOkIcuUQPdoSZqIYoUekav6M0B58V5dz7mrStOMXOE/sD5/AFZKJFN</latexit>

G̃R

Database
Lookup

Top 3 scenes retrieved 
in terms of latent code 

likelihood

Pass Latent 
through GNN 

Decoder to 
furnish 

<latexit sha1_base64="m2hUtA69YDIW92+oykCmvWKJwG0=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KkkR9Vj0oMcq9gPSUDabTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZemApuwHW/nZXVtfWNzdJWeXtnd2+/cnDYNirTlLWoEkp3Q2KY4JK1gINg3VQzkoSCdcLRzdTvPDFtuJKPME5ZkJCB5DGnBKzk94CLiOW3k/5Dv1J1a+4MeJl4BamiAs1+5asXKZolTAIVxBjfc1MIcqKBU8Em5V5mWEroiAyYb6kkCTNBPjt5gk+tEuFYaVsS8Ez9PZGTxJhxEtrOhMDQLHpT8T/PzyC+CnIu0wyYpPNFcSYwKDz9H0dcMwpibAmhmttbMR0STSjYlMo2BG/x5WXSrte8i1r9/rzauC7iKKFjdILOkIcuUQPdoSZqIYoUekav6M0B58V5dz7mrStOMXOE/sD5/AFZKJFN</latexit>

G̃R

Figure 3. Manipulating the latent space to generate room-aware
designs that best match a designer-curated database.

[4], which results in a primal-dual saddle point optimization
problem. Please see Algorithm 1 (Appendix) for details.

3.5. Inference

For inference, we start with a room layout graph GR and
type T along with the number of furniture items to be placed
in the room nF . We then use the learnt autoregressive prior
to sample nF latent variables recursively. This latent Z

along with (nF , GR, T ) is processed by the graph decoder
to generate the furniture layout subgraph GF . For scene
rendering, we use the predicted shape descriptor for each
furniture item and perform a nearest neighbour lookup us-
ing the `2 distance against a database of 3D furniture mesh
objects indexed by their respective PointNet feature. We
then use the predicted size and orientation to place furniture
items in the scene. Note, the inclusion of shape descriptors
allows our model to reason explicitly about the furniture’s
3D shape as opposed to retrieval based on just furniture cat-
egory and size as in [41, 27].

4. Experiments

In this section, we evaluate the effectiveness of the pro-
posed approach qualitatively and quantitatively. Please see
Appendix A for additional figures and details.
Dataset. We use the 3D-FRONT dataset [9] for all our ex-
periments. The dataset consists of roughly 14k rooms, fur-
nished with 3D mesh furniture items. We consider 4 room
types (bedroom, living room, library and dining room),
which contain furniture items from 34 categories.
Training protocols. We use an 80-20 train-test split to train
all models. Since our model predicts PointNet shape de-
scriptors, which can be used to retrieve all 34 categories,
we train our model to predict only 7 “super-categories”3

of furniture items.4 Since furniture is mostly axis-aligned,

3Cabinet/Shelf, Bed, Chair, Table, Sofa, Pier/Stool, Lighting.
4This is contrary to prior work [27] which explicitly models the 34 fine-

Table 1. Quantitative comparison of our method with other models
and baselines. Real vs. Generated Scene Discrimination Accuracy
closer to 0.5 is better.

Category KL Divergence (#) Real vs. Generated Scene Discrimination Accuracy
Bedroom Living Dining Library Bedroom Living Dining Library

ATISS 0.01 0.00 0.01 0.01 0.75 0.82 0.75 0.86
Baseline B1 0.02 0.02 0.05 0.09 0.94 0.93 0.90 0.91
Baseline B2 0.02 0.02 0.05 0.07 0.93 0.91 0.85 0.90
Ours 0.01 0.01 0.02 0.02 0.83 0.88 0.78 0.82

we discretize the orientation space into four categories
[0�, 90�, 180�, 270�]. We also rotate the room by multiples
of 90� as data augmentations. We train all models using the
ADAM optimizer for 1,500 epochs with a batch size of 128.

Baselines. We compare our VAE model with two base-
lines (inspired from [24]), which have the same Encoder-
Decoder architecture but employ the commonly used i.i.d.
prior: (i) Standard Prior (B1): Each Z

i ⇠ N (0, I)
for i 2 [1, ..., nF ], (ii) Non-autoregressive Learnt Prior

(B2): Each Z
i ⇠ N (µ(GR), �(GR)). The mean and vari-

ance parameters of this distribution are learnt by an MP-
GNN, which processes just the room subgraph.

Scene generation. In Figure 1b, we illustrate the effec-
tiveness of the proposed method at generating diverse fur-
niture recommendations given a room layout. Notice how
our model generates diverse furniture arrangements and 3D
appearances e.g. sampled beds, cabinets and ceiling lights
look distinct in row 1. In the library (row 2), our model
proposes diverse arrangements such as a simple study room
or a lounge with a couch and chair. In Figure 2 we qual-
itatively compare our generations for different rooms with
ATISS and VAE baselines. The figure shows that our base-
line models have inconsistent overlapping furniture place-
ments. In contrast, our model generates plausible furni-
ture arrangements, bridging the performance gap between
latent-variable models and autoregressive ones (ATISS).

In Table 1, we provide quantitative metrics comparing
our model with baseline VAEs and ATISS. The first met-
ric, Category KL Divergence, measures how well the model
captures the frequency of categories in an indoor scene us-
ing all 34 fine-grained furniture labels when compared to
the ground truth. We obtain the fine-grained label of a gen-
erated furniture as the category of the nearest-neighbor fur-
niture retrieved using the predicted shape features. On this
metric, our method is competitive with ATISS showing that
even though we explicitly model “super-categories” only,
our model is able to capture well the fine-grained object la-
bel frequencies of the test set via the shape descriptors.

The second metric, real vs generated scene discrimina-

grained categories in 3D-FRONT. We made this design choice since we use
shape descriptors for each furniture item which has the fine-grained label
information encoded in them. The 7 super-categories are only used to pro-
vide high-level supervision to distinguish between furnitures which may
have similar shapes, for example, a chair and a sofa-chair. During synthe-
sis, our model predicts the shape descriptors, which is used for rendering,
and thus can generate furniture’s belonging to all the 34 categories.

791



tion accuracy (close to 0.5 is better), tests the ability of a
network to distinguish between real and synthetic scenes.
This network is trained on a dataset comprised of real
scenes from 3D-FRONT and synthesized scenes using the
model to be evaluated (for example, ATISS). If the genera-
tions are perfect, this trained network would not be able to
distinguish between real and synthesized scenes, and the re-
sulting classification decision would be akin to an unbiased
coin flip, which corresponds to an accuracy of 0.5. Differ-
ent from prior work [27], we evaluate this metric by train-
ing a GNN directly on the synthesized 3D scene graphs vs.
ground truth graphs, instead of classifying the rendered 2D
top-down orthographic projections. This is because at the
image level, CNNs are not able to explicitly reason about
3D spatial relationships compared to a GNN. Moreover,
classifying 2D projections is sensitive to the rendering used
and thus not comparable across different works. On this
metric, our method performs significantly better than base-
lines (7-10% improvement) and is competitive with ATISS.
Manipulating the latent space to generate room-aware

designs that best match a designer-curated database.

In the previous sub-section we showed our model’s abil-
ity to generate indoor scenes given room layouts. However,
apart from AI-synthesized recommendations one might also
wish to obtain recommendations from human interior de-
signers. This can be automated by having a large database
curated using hand-designed interior rooms and then given
an empty floor-plan by the user, recommend “appropriate”
designs from this database. However, the current practice
is for the user to manually browse through configurations
to find a match [28, 1]. Instead, through our learnt latent
space, we can use our model to suggest the best designs
from the database to choose from. To simulate this, we con-
sider the 3D-FRONT training set as our database. We use
our learnt GNN encoder to convert each of these scenes into
their corresponding latent code and store in the database.
Then, given an empty room layout G̃R we retrieve the la-
tent code with the highest likelihood under our autoregres-
sive prior (3) (conditioned on G̃R and its type).5 Finally, we
pass this latent through the GNN decoder along with G̃R.
This ensures that the empty room is furnished according to
the design of the retrieved scene while respecting the con-
straints imposed by G̃R, e.g. furniture items should not go
outside walls. Figure 3 shows results for this experiment.
Scene editing. Our model also allows the user to tra-
verse along the latent space to edit the scene content post-
generation. Given a synthesized scene, we can convert a
given furniture with label c1 to another furniture labelled c2

ensuring all other objects are approximately in the same ge-
ometric configuration. This is a non-trivial problem since
depending on the room layout we also need to decide the

5We evaluate (5) to compute the ordering ⇡ of the latents for evaluating
its likelihood under the autoregressive prior. More details in Appendix.

Figure 4. Scene editing. Col 1 is a scene generated by our model.
As described in the text, by changing the ↵ parameter, in row 1 we
morph the bed into a chair, and in row 2 we morph the top cabinet
into a chair.

size and orientation of the new furniture labelled c2. In
our formulation, this can be done by finding a latent direc-
tion v := µ2�µ1

||µ2�µ1||2 that transforms furniture from label
c1 ! c2, where {µ1, µ2} are the sample mean of the latent
representations of furnitures with label {c1, c2}. Specifi-
cally, recall the GNN encoder in our model maps the input
graph to a latent space with every furniture node having a
separate latent code. We first compute the latent embed-
dings for all scenes in the training set. We then compute µi

by averaging over all latent codes corresponding to furni-
tures with label ci across all scenes in the training set, where
i 2 {1, 2}. Now at inference time, we synthesize a scene S

with a furniture labelled c1 using our autoregressive prior.
Post-synthesis we can select the latent ẑ corresponding to
furniture c1 and translate it to ẑ

0 = ẑ + ↵v, where ↵ con-
trols the magnitude of morphing c1 into c2. This updated
latent ẑ

0 along with the latent codes of all other furniture
items in S are passed through the GNN decoder again. The
end result, furniture c1 gets morphed into c2 while keeping
the relative spatial arrangement of all other furniture’s the
same. This process is elucidated in Figure 4.

Generation time. The average run-time for scene synthesis
for our method is 130.26ms vs. 148.51ms for ATISS (mea-
sured on NVIDIA GeForce GTX 2080 Ti machine).

5. Conclusion

We have presented a latent-variable model for generating
3D indoor scenes given the room type and layout. The pro-
posed model outperforms existing graph VAE models and is
competitive with purely autoregressive models. Moreover,
we showed how a learnt latent space can be used to recom-
mend designs from a database. In future work, we wish to
explore more expressive non-linear autoregressive priors to
further improve the quality and diversity of generations.

792



References

[1] Havenly: Online interior design and home decorating, 2022.
[2] Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir R Zamir,

Martin Fischer, Jitendra Malik, and Silvio Savarese. 3D
scene graph: A structure for unified semantics, 3D space, and
camera. In IEEE/CVF International Conference on Com-
puter Vision, pages 5664–5673, 2019.

[3] Christopher M Bishop. Pattern recognition. Machine learn-
ing, 128(9), 2006.

[4] Luiz Chamon and Alejandro Ribeiro. Probably approxi-
mately correct constrained learning. Advances in Neural In-
formation Processing Systems, 33, 2020.

[5] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015.

[6] Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Pra-
fulla Dhariwal, John Schulman, Ilya Sutskever, and Pieter
Abbeel. Variational lossy autoencoder. arXiv preprint
arXiv:1611.02731, 2016.

[7] Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas
Funkhouser, and Pat Hanrahan. Example-based synthesis
of 3d object arrangements. ACM Transactions on Graphics
(TOG), 31(6):1–11, 2012.

[8] Matthew Fisher, Manolis Savva, and Pat Hanrahan. Char-
acterizing structural relationships in scenes using graph ker-
nels. In ACM SIGGRAPH 2011 papers, pages 1–12. 2011.

[9] Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming
Wang, Cao Li, Qixun Zeng, Chengyue Sun, Rongfei Jia, Bin-
qiang Zhao, et al. 3d-front: 3d furnished rooms with layouts
and semantics. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 10933–10942,
2021.

[10] Raghudeep Gadde, Qianli Feng, and Aleix M. Martinez. De-
tail me more: Improving gan’s photo-realism of complex
scenes. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 13950–13959,
October 2021.

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

[12] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,
Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and
Alexander Lerchner. beta-vae: Learning basic visual con-
cepts with a constrained variational framework. 2016.

[13] Chenfanfu Jiang, Siyuan Qi, Yixin Zhu, Siyuan Huang,
Jenny Lin, Lap-Fai Yu, Demetri Terzopoulos, and Song-
Chun Zhu. Configurable 3d scene synthesis and 2d im-
age rendering with per-pixel ground truth using stochas-
tic grammars. International Journal of Computer Vision,
126(9):920–941, 2018.

[14] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[15] Mohammad Keshavarzi, Aakash Parikh, Xiyu Zhai, Melody
Mao, Luisa Caldas, and Allen Yang. Scenegen: Genera-
tive contextual scene augmentation using scene graph priors.
arXiv preprint arXiv:2009.12395, 2020.

[16] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. CoRR, abs/1312.6114, 2014.

[17] Thomas Kipf and Max Welling. Variational graph auto-
encoders. ArXiv, abs/1611.07308, 2016.

[18] Thomas N Kipf and Max Welling. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308, 2016.

[19] Alexej Klushyn, Nutan Chen, Richard Kurle, Botond Cseke,
and Patrick van der Smagt. Learning hierarchical priors in
vaes. arXiv preprint arXiv:1905.04982, 2019.

[20] Abhishek Kumar, Prasanna Sattigeri, and Avinash Bal-
akrishnan. Variational inference of disentangled latent
concepts from unlabeled observations. arXiv preprint
arXiv:1711.00848, 2017.

[21] Matt J Kusner, Brooks Paige, and José Miguel Hernández-
Lobato. Grammar variational autoencoder. In International
Conference on Machine Learning, pages 1945–1954. PMLR,
2017.

[22] Seth L Lacy and Dennis S Bernstein. Subspace identifica-
tion with guaranteed stability using constrained optimiza-
tion. IEEE Transactions on Automatic Control, 48(7):1259–
1263, 2003.

[23] Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri,
Owais Khan, Ariel Shamir, Changhe Tu, Baoquan Chen,
Daniel Cohen-Or, and Hao Zhang. Grains: Generative re-
cursive autoencoders for indoor scenes. ACM Transactions
on Graphics (TOG), 38(2):1–16, 2019.

[24] Andrew Luo, Zhoutong Zhang, Jiajun Wu, and Joshua B
Tenenbaum. End-to-end optimization of scene layout. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 3754–3763, 2020.

[25] Effrosyni Mavroudi, Benjamı́n Béjar Haro, and René Vidal.
Representation learning on visual-symbolic graphs for video
understanding. In European Conference on Computer Vi-
sion, pages 71–90. Springer, 2020.

[26] Wamiq Para, Paul Guerrero, Tom Kelly, Leonidas J Guibas,
and Peter Wonka. Generative layout modeling using con-
straint graphs. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 6690–6700,
2021.

[27] Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten
Kreis, Andreas Geiger, and Sanja Fidler. Atiss: Autoregres-
sive transformers for indoor scene synthesis. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

[28] Sarah Perez. Amazon debuts showroom, a visual shopping
experience for home furnishings. Techcrunch, 2019.

[29] Pulak Purkait, Christopher Zach, and Ian Reid. SG-VAE:
Scene grammar variational autoencoder to generate new in-
door scenes. In European Conference on Computer Vision,
pages 155–171. Springer, 2020.

793



[30] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3D classification
and segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 652–660, 2017.

[31] Siyuan Qi, Yixin Zhu, Siyuan Huang, Chenfanfu Jiang, and
Song-Chun Zhu. Human-centric indoor scene synthesis us-
ing stochastic grammar. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
5899–5908, 2018.

[32] Danilo Rezende and Shakir Mohamed. Variational inference
with normalizing flows. In International Conference on Ma-
chine Learning, pages 1530–1538. PMLR, 2015.

[33] Daniel Ritchie, Kai Wang, and Yu-An Lin. Fast and flexi-
ble indoor scene synthesis via deep convolutional generative
models. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6175–6183, 2019.

[34] Martin Simonovsky and Nikos Komodakis. Graphvae: To-
wards generation of small graphs using variational autoen-
coders. In International Conference on Artificial Neural Net-
works, pages 412–422. Springer, 2018.

[35] Jakub Tomczak and Max Welling. Vae with a vampprior.
In International Conference on Artificial Intelligence and
Statistics, pages 1214–1223. PMLR, 2018.

[36] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc., 2017.

[38] Joshua T Vogelstein, John M Conroy, Vince Lyzinski,
Louis J Podrazik, Steven G Kratzer, Eric T Harley, Don-
niell E Fishkind, R Jacob Vogelstein, and Carey E Priebe.
Fast approximate quadratic programming for graph match-
ing. PLOS one, 10(4):e0121002, 2015.

[39] Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, An-
gel X Chang, and Daniel Ritchie. Planit: Planning and in-
stantiating indoor scenes with relation graph and spatial prior
networks. ACM Transactions on Graphics (TOG), 38(4):1–
15, 2019.

[40] Kai Wang, Manolis Savva, Angel X Chang, and Daniel
Ritchie. Deep convolutional priors for indoor scene syn-
thesis. ACM Transactions on Graphics (TOG), 37(4):1–14,
2018.

[41] Xinpeng Wang, Chandan Yeshwanth, and Matthias Nießner.
Sceneformer: Indoor scene generation with transformers.
arXiv preprint arXiv:2012.09793, 2020.

[42] Yi-Ting Yeh, Lingfeng Yang, Matthew Watson, Noah D
Goodman, and Pat Hanrahan. Synthesizing open worlds with
constraints using locally annealed reversible jump mcmc.
ACM Transactions on Graphics (TOG), 31(4):1–11, 2012.

[43] Zaiwei Zhang, Zhenpei Yang, Chongyang Ma, Linjie Luo,
Alexander Huth, Etienne Vouga, and Qixing Huang. Deep
generative modeling for scene synthesis via hybrid represen-

tations. ACM Transactions on Graphics (TOG), 39(2):1–21,
2020.

794


