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Need For Interpretable Machine Learning

Patient has Alzheimer’s disease
with 98.6% probability

MRI Scan

Black-Box

“because this region is
abnormally dilated...”

Patient has Alzheimer’s disease

Desire with 98.6% probability

MRI Scan

Interpretable By Design

» Recent work introduced Information Pursuit (IP)' as a
framework for making interpretable decisions in machine
learning.

» User defines a set of queries @, which are functions of the
data interpretable to the user.

» |P sequentially and adaptively selects queries from @, until
the answers are sufficient for prediction.

— The sequence of query-answer pairs obtained serves as an
explanation for the prediction.

How Does This Make Decisions Interpretable?

Ask a sequence of interpretable queries
Input Image z°" about the given image z°P:

d1- Has an all-purpose bill shape? Yes.

d2- Has white-colored belly? No.

d3- Has solid breast pattern? No. Prediction:

| 94 Hasyellow-colored breast? No. | —— Blue Jay with 99%

g5- Has rounded wing shape? No. confidence

g6- Has black-colored bill? Yes.

q7- Has black-color leg? No.

ds- Has gray-colored leg? Yes.

» Task: Bird species identification.
» Query set: Queries about presence of visual attributes of birds.

» The prediction of a bird species is explained through a short
sequence of interpretable queries, (¢1,42, ---,q9) derived from a
user-defined query set of domain-specific attribute for birds.
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Information Pursuit: Algorithm

» Information Pursuit (IP): greedy strategy where queries are
chosen sequentially in order of information gain?.

Queries are chosen according to observed input x°bs

+ Firstquery: @1 = argergaxf (¢(X);Y) o Hisor
« Nextquery: Qi+1 = arg TgaXI(Q(X);Y | q1:1(2°7%))
qc
 Termination: gr+1 = qstop if meagc](q(X);Y | qlzL(xObS)) ~ 0
q
q1.1(2°"%) is the event that contains all realizations of X that agree on the first

obs

k query-answers for z°".
— X, Y : random variables pertaining to data and labels respectively.

— q(X) : answer to query ¢ evaluated at X.

Generative-IP: Prior Approach

» Generative-IP (G-IP)! carries out IP by learning a generative
model for the joint distribution of query-answers and labels.

» Limitation: Need efficient inference and sampling techniques
to compute the argmax in IP using the learnt model.

This Work: Variational Characterization Of IP

» Generative models are only a means to an end.

— What we really want is the most informative next query, not really in
actual values of mutual information.

> We show that, given history qi.x(z

qr+1 = arg min Dgy, (P (Y | X, Q1:k($0bs)> | P(Y | Q(X),Ch:k(ﬂ?ObS)))

qeq

°"®), the most informative query

» This motivates the following stochastic objective called
Variational Information Pursuit (V-IP),

min - By s[Dx(PY ] X) | B(Y ] 4 (X), 5)]

_~~ Random History

where qn ‘= gn(S) —> V-IP querier

Py(Y | ¢5(X),S) == fo({ay, a7(X)} US)

— The V-IP querier is a deep network that takes as input a random history
(random set of query-answer pairs) and outputs a query from Q.

gn and fy are parameterized by
deep networks.

Theorem (Informal): The optimal querier to the V-IP objective is the
function that maps any given history (set of query-answer pairs) to
the most informative next query about Y.
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Interpretable Predictions Using V-IP

k =

(2)

7 k=28

b

. k=1 k=2 k=3 k=4 k=5 k=6
fl.oo'

% 0.75 1 1

= 050 ] 1

= 0.25 1 1

> 0.00 . AR

0. Ear pain

P(Y | g1.£(z°)) | (c)

0. Init

1. Sore throat 1. bill shape::all-purpose

2. Fever

3. Cough

2. belly color::white

3. shape::perching-like
4. Nasal congestion 4. tail pattern::solid
5. Allergic reaction 5. bill shape::hooked seabird
6. bill color::black

7. under tail color::black

6. Shortness of breath
7. Painful sinuses

8. Diminished hearing 8. leg color::black

0.4

I0.2
0.0

9. Dizziness 9. wing color::white

10. Skin rash

10. leg color::grey

11. Itchiness of eye 11. head pattern::plain

12. forehead color::black
13. size::medium (9 - 16 in)
14. back color::black

Each figure illustrates one run of the V-IP algorithm, depicting the sequence

of query-answer chains obtained for a randomly chosen test sample from
the (a) CIFAR-10, (b) SymCAT-200, and (c) CUB-200 datasets respectively.

Empirical Comparisons
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» On datasets like MNIST, where good generative models are
available, G-IP performs slightly better than V-IP in terms of
avg. # queries needed to reach a certain level of test
accuracy.
> On complex datasets like RGB images (CIFAR-{10,100}), V-IP
outshines all baselines.
> V-IP inference is 10-100x faster than G-IP in all cases!
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