
Interpretable by Design: Learning Predictors by Composing 

Interpretable Queries

Interpretability Crisis Proposed Framework

• We propose the concept of a query set 𝑄 which is a set of user-defined task-

dependent functions of data. Each with a specific interpretation to the user.

• We propose an information-theoretic framework to compose these queries to form 

concise explanations of model predictions. 

Experiments: IP in action
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Prior Work: Post-Hoc interpretability

Models should be Interpretable by Design

• Learning models that are interpretable by design solves all the 

shortcomings of post-hoc interpretability methods. However, there are 

key challenges.

• Challenge 1: An ideal interpretable explanation of a model’s prediction is 

highly task-dependent and end-user dependent. 

– A model for image classification is often considered interpretable if its decision can be 
explained in terms of patterns occurring in salient parts of the image.

– In a medical task explanations in terms of causality and mechanism could be desired 

• Challenge 2: Desirable interpretations are often compositional and can 

be constructed and explained from a set of elementary units. For 

instance, words, parts of an image, or domain-specific concepts.

• Challenge 3: Following the principle of Occam’s razor we would like the 

explanations to be composed of the smallest number of queries.

• Current trend is to interpret black-box models post-hoc.

• The Good: No need to retrain model, accuracy maintained.

• The Bad: 

– Explanations generated are unreliable; not faithful to the model it tries 

to explain.1

– Salient parts of image might not be most informative to end-users.2

How does this make decisions interpretable?
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Idea: Given 𝑄, propose the following optimization problem. 

Minimal:

Sufficient:  

Explanation of 

the prediction

Input image �

Green Jay

Predicted bird species

Composing explainable queries

� . Has shape perching-like? Yes

� . Has bill shape all-purpose? Yes

� . Has belly color yellow? Yes

� . Has upperparts color yellow? No

� . Has throat color yellow? No

� . Has breast color black? Yes

� . Has belly color olive? Yes

The prediction of a bird species is explained 

through a short sequence of interpretable 

queries, (𝑞1, 𝑞2,… , 𝑞7), derived from a user-

defined query set of domain-specific attribute 

for birds. 

Information Pursuit: a greedy approximation 

• Unfortunately solving the objective in (1) is NP-Hard. We propose to use 

a greedy approximation called Information Pursuit (IP).3

• IP selects queries in order of information gain.

Queries are chosen according to observed 𝑥.

• First query:

• Next query:

• Termination:

Definition: IP Encoder

is the event that contains all realizations of 𝑋 that agree on the first 𝑘 query-answers for 𝑥.

Computational Challenge: How do we compute the mutual information terms required 

for carrying out IP on high-dimensional data like images?

Making IP tractable with Deep Generative Models

• Selecting the first query requires computing 

𝐼(𝑞(𝑋); 𝑌)
– Need a joint distribution of 𝑞(𝑋) and 𝑌.

• Later queries require computing 𝐼(𝑞(𝑋);𝑌 ∣ 𝑞1:𝑘(𝑥))
– Need a joint distribution of (𝑞(𝑋), 𝑌) given History.

– As histories get longer, we run out of samples that match 

History.

• The above two problems need to be solved ∀𝑞 ∈ 𝑄, 

which scales linearly with the number of queries.

History

Computational Challenges
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Modelling Assumption: Assume 

query answers are conditionally 

independent given target variable Y 

and “some” latent variable Z.

Examples,

▪ Z = pose and lighting 

conditions.

▪ Z = phonemes in speech.

• We learn this joint distribution of all query-answers 𝑄(𝑋) and labels 𝑌 using a Variational 

Autoencoder. 

• Our modelling assumption of conditional independence makes estimating 𝐼(𝑞(𝑋); 𝑌 ∣ 𝑞1:𝑘(𝑥))
tractable using Markov Chain Monte Carlo (MCMC) sampling. 

– In particular, we employ the Unadjusted Langevin Algorithm (ULA) to carry out MCMC and get samples from the 
required posterior distributions.

Proposed Solution
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