Foundations of Interpretable Al

Tutorial @ (VPR @c/u/% TR

6ART I: Motivation and Post-hoc Methods  (9:00 - 9:45 am) Aditya Chattopadhyay (Amazon)

PART II: Shapley Value Based Methods (9:45 — 10:30 am) Jeremias Sulam (Johns Hopkins)

= Coffee break = (10:30 — 11 am)

QART III: Interpretable by Design Methods (11-11:45am)  René Vidal (Penn)




Interpretability Crisis

- As deep learning is widely used in safety critical applications, there is
a need for developing trustworthy and interpretable models.

- |deally we desire...

“Since there is atrophy
in this region...”

I I rvw > m > Patient has Alzheimer’s disease
- But in reality bo

with 98.6% probability
MRI Scan

White-Box

8 VW > »  Patient has Alzheimer’s disease
A o with 98.6% probability
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Black-Box
& Penn



Main Trend: Post-hoc Explanations

« Most method interpret black-box models post-hoc using importance scores
based on the sensitivity of the model output to the input features:

— LIME [1]
— Grad-CAM [2]

— SHAP [3] r 1
« The Good: V —

— No need to retrain model, '9c@racy maintaieds, .

- The Bad: — |
— Explanations are unreliable; not faithful to the model it tries to e»
— Feature importance scores might not be interpretable to end-use

Patient has Alzheimer’s
disease with 98.6%
probability
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(1]

[2] Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. ICCV 2017. '.‘

[3] Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. NIPS, pp 4765-4774, 2017. (YY)

[4] Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., & Kim, B. Sanity checks for saliency maps. NeurlPS, 2018 ‘ A

[5] Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 2019. UNIVERSITY of PENNSYLVANIA

Ribeiro, Singh, Guestrin. "Why Should | Trust You?” Explaining the Predictions of Any Classifier. KDD, 2016.



Need for Interpretable-by-Design Models

- Explanations are user/task/domain dependent and best described in
terms of words/attributes/facts that support the decision’s reasoning.

« We can capture this via a user/task/domain dependent query set O.

(a) Task: bird classification (b) Task: scene interpretation (c) Task: medical diagnosis
Queries: parts, attributes Queries: objects, relationships Queries: symptoms

0. Ear pain

1. Sore throat

2. Fever

3. Cough

4. Nasal congestion
5. Allergic reaction

6. Shortness of breath

7. Painful sinuses




Concept Bottleneck Models (CMBs)

Has Horns? Yes
Has Fur? Yes

Deep Has Wings? Li
gs? No inear .
> Network > s Four-legged? Yes > Network > Bison
R
Concept o -
Input Predictor Classifier Prediction

« Concept Bottleneck Models (CBMs) [1].
— Specify a query set: define a set of task-relevant concepts Q.
— Answer queries: train deep network to predict concepts from Q in image x.
— Make prediction: train linear classifier on predicted concepts.

- Explain prediction via weights of linear layer for different concepts.

B4R 0y

[1] Koh, P. W., Nguyen, T, Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., & Liang, P. Concept bottleneck models. ICML, 2020. UNIVER f PENNSYLVANIA



Are Concept Bottleneck Models Enough?

Has Horns? Yes
Has Fur? Yes

Deep Has Wings? Li
gs? No inear .
> Network > s Four-legged? Yes > Network > Bison
\ "
Concept o -
Input Predictor Classifier Prediction

 Limited expressivity: linear classification layer limits expressivity of
CBMs when “concept answers — class prediction” map is non-linear.

- Limited interpretability: explanations in terms of coefficients of linear
weights not always desirable to end-users, especially non-Al experts.

- Limited flexibility: same explanations for all inputs in the same class.

e
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Information Pursuit Framework

- Information Pursuit: interpretable-by-design framework based on:

— Selecting the smallest number of queries that are sufficient for prediction.
— Making a prediction based only on the chain of query-answer pairs.

(@

)

Input image y0bs Ask a sequence of interpretable queries about x
q1- Has shape perching-like? Yes
q,. Has bill shape all-purpose? Yes
q3- Has belly color yellow? Yes

q4- Has upperparts color yellow? No

qs- Has throat color yellow? No
qe- Has breast color black? Yes
q7- Has belly color olive? Yes

obs

j

[1] Chattopadhyay, Slocum, Haeffele, Vidal, Geman. Interpretable by design: Learning predictors by composing interpretable queries. TPAMI 2022.

Predicted bird species

———— Green Jay with
99% probability

% UNIVERSITY 0f PENNSYLVANIA



Ingredients Needed to Implement this Framework

 Q1: How do we define the set of queries?

— DNafinaAd hw AAamain avnarte 111
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— Train classifiers on data annotated with query answers by task experts [1].

— Information Pursuit: Select smallest number of queries that are sufficient

[1] Chattopadhyay, Slocum, Haeffele, Vidal, Geman. Interpretable by design: Learning predictors by composing interpretable queries. TPAMI 2022.

[2] Chattopadhyay, Chan, Haeffele, Geman, Vidal. Variational Information Pursuit for Interpretable Predictions, ICLR 2023. R
[3] Chattopadhyay, Pilgrim, Vidal. Information Maximization Perspective of Orthogonal Matching Pursuit with Applications to Explainable Al. NeurlPS 2023. e
[4] Chattopadhyay, Chan, Vidal. Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification. ICLR 2024.

[5] Chattopadhyay, Haeffele, Vidal, Geman. Performance Bounds for Active Binary Testing with Information Maximization. ICML 2024. UNIVERSITY 0f PENNSYLVANIA



Q1: How to define the set of queries?




Q1: How do we Define the Set of Queries?

- Defined by domain experts [1,2]
— Assume queries have similar semantic resolution.
— CUB dataset

* 200+ bird classes (a) Task: bird classification (c) Task: medical diagnosis
« 300+ bird attributes Queries: parts, attributes Queries: symptoms

— SymCAT-200 dataset
« 200 disease diagnosis
+ 326 patient symptoms
— Challenge
* Annotating queries is very costly

0. Ear pain

1. Sore throat

2. Fever

3. Cough

4. Nasal congestion
5. Allergic reaction

6. Shortness of breath

7. Painful sinuses

[2] Chattopadhyay, Slocum, Haeffele, Vidal, Geman. Interpretable by design: Learning predictors by composing interpretable queries. TPAMI 2022.
[3] Oikarinen, T., Das, S., Nguyen, L. M., & Weng, T. W. (2023). Label-free concept bottleneck models. ICLR 2023
[4] Chattopadhyay, Chan, Vidal. Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification. ICLR 2024.

Penn

UNIVERSITY 0f PENNSYLVANIA

[1] Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., & Liang, P. Concept bottleneck models. ICML, 2020. @



Q1: How do we Define the Set of Queries?

- Defined by large language models [3,4].
— E.g., ask LLM for list of attributes of all relevant categories.

For every {class}:

Convert to queries:
g1 = blue color
g2 = black color
g3 = medium size
g4 = spotted pattern

PROMPT to GPT-3: List the useful visual
attributes (and their values) of the bird
image category ‘{class = Blue Jay}'

v

RESPONSE:
1. Color: Blue, White, Black
2. Size: Medium
3. Shape: Long Tail, Crested Head I
4. Pattern: Spotted, Striped

9L = value <attr>

Union over all classes

N.<attr>: <value> l
Query Set -

[1] Koh, P. W, Nguyen, T., Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., & Liang, P. Concept bottleneck models. ICML, 2020. R
[2] Chattopadhyay, Slocum, Haeffele, Vidal, Geman. Interpretable by design: Learning predictors by composing interpretable queries. TPAMI 2022. '.‘
[3] Oikarinen, T., Das, S., Nguyen, L. M., & Weng, T. W. (2023). Label-free concept bottleneck models. ICLR 2023 (] el I I I
[4] Chattopadhyay, Chan, Vidal. Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification. ICLR 2024. UNIVERSITY 0f PENNSYLVANIA



Q2: Given an input and a query,
how do we answer the query?




Q2: How do we Answer a Query for a given Input?

- Train classifiers on data annotated with query answers [1].

Has Horns? Yes
Has Fur? Yes

. Deep — Has Wings? No
Network Is Four-legged? Yes
T > o t
Input Concep

— Challenge: need tons of data anfoiated with all concepts/attributes/facts
=> few datasets have such detailed annotations.

— Challenge: cannot handle new queries that have not been annotated.

e

[1] Koh, P. W, Nguyen, T., Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., & Liang, P. Concept bottleneck models. ICML, 2020. UNIVERSITY 0f PENNSYLVANIA



Q2: How do we Answer a Query for a given Input?

- Use Vision Language Models (VLMs) to answer queries
— Challenge: State-of-the-art VLMs like Llama [1] and BLIP [2] are too slow

to be used in an online manner.
— Challenge: CLIP [3] is relatively light-weight, but CLIP dot products

between query and image are inadequate: they are not interpretable.

Observed distribution of CLIP dot products

Desired distribution of CLIP dot products
1.0 :
| Threshold Input image x° 4 Threshold?
oy | 2
%0.5 | @
c 2
8 No<—» Yes 3
0.0 2. 0
0.0 0.2 04 06 08 1.0 0.0 0.2 0.4 06 08 1.0
CLIP dot product value

CLIP dot product value
BSR40
[1] Touvron, Lavril, Izacard, Martinet, Lachaux, Lacroix, Roziére et al. "Llama: Open and efficient foundation language models." arXiv preprint arXiv:2302.13971, 2023. '.‘
&Y
UNIVERSITY 0f PENNSYLVANIA

[2] Li, Junnan, et al. "Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models." ICML 2023.
[3] Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry et al. "Learning transferable visual models from natural language supervision." ICML 2021



Q2: Can we Improve CLIP without Annotations?

 In image classification, most query answers are known to be false
based on the class alone.

— Example: Know class is dog — “does the subject have fins?” is false — no
need to see the image.

Input image x°°

Yes! Use
LLMs

« We need to look at the nii..4e only for

— Example: “Does the subject have a leash?”. Need to see image since not
all dogs have a leash.

B4R 0y
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Concept Question Answering System [1]

- Pseudo-labeling: Use GPT to determine class-relevant queries and
use CLIP to determine probability of being true based on image.

Image

Query

Class

CLIP

GPT

Yes

No

True

with probability
equal to CLIP’s
dot product

False

— Pseudo-answers

. Concept-QA: Train & F§HEREISKEVisual question answering (VQA)
system using pseudo-answers as we don’'t know class at test time.

Image

Query

Concept-QA

— P( True)

B4R 0y
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[1] Chattopadhyay, Chan, Vidal. "Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification." ICLR 2024 UNIVERSITY of

ITY of PENNSYLVANIA



Interpretability of Concept-QA answers

« Concept-QA is more interpretable than CLIP!

Input image x°bs
P J 7.5 \Threshold

4 Threshold?
|
> 5.0 :
22 @ No ——Yes
@ o |
a Q2.5 |
|
0 - : i : i | 0.0 : ! E—
00 02 04 06 08 1.0 00 02 04 06 0.8

CLIP dot produ.ct value Concept-QA P(True) for x°bs



Accuracy of Concept-QA answers

« Concept-QA is more accurate than CLIP & more efficient than BLIP2:
— Concept-QA takes 0.04s per query vs 1.52s per query for BLIP2 FlanT5

model!
Model ImageNet Places365 CUB-200 CIFAR-10 | CIFAR-100
Acc. F Acc. F Acc. F Acc. Fy Acc. F
CLIP-Bingy 055 039|058 042 056 048 | 0.58 047 | 051 0.21
CLIP-Bin,om 050 027|049 026|056 045 066 053|054 024
BLIP2 ViT-g OPT,7 | 0.55 0.31 | 0.76 0.18 | 0.53 035 | 0.73 0.13 | 0.86 0.07
BLIP2 ViT-g FlanT5y; | 0.86 0.56 | 0.87 0.62 | 0.70 040 | 0.83 0.59 | 0.87 041

Concept-QA (Ours) | 0.87 0.56 | 0.83 045 | 0.80 0.54 | 0.80 0.62 | 0.80 0.38

Manually annotated 2.5K randomly sampled image-query pairs for each dataset.

B4R 0y
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Q3: How do we select the queries
that form an explanation?




Information Pursuit (IP)

- Q3: How do we select queries that form the explanation?

— Shorter chains are easier to interpret.
— Select smallest number of queries that are sufficient for prediction.

Generative-IP (G-IP) [1] Variational-IP (V-IP) [2]

Learn deep generative model and use Train deep network to select the next
it to select most informative queries. optimal query given answers thus far.

Use orthogonal matching pursuit and large vision and language models.

[1] Chattopadhyay, Slocum, Haeffele, Vidal, Geman. Interpretable by design: Learning predictors by composing interpretable queries. TPAMI 2022.

[2] Chattopadhyay, Chan, Haeffele, Geman, Vidal. Variational Information Pursuit for Interpretable Predictions, ICLR 2023. B GRY

[3] Chattopadhyay, Pilgrim, Vidal. Information Maximization Perspective of Orthogonal Matching Pursuit with Applications to Explainable Al. NeurlPS 2023. '.‘ P

[4] Chattopadhyay, Chan, Vidal. Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification. ICLR 2024. 0‘0 e I I I I
[5] Chattopadhyay, Haeffele, Vidal, Geman. Performance Bounds for Active Binary Testing with Information Maximization. ICML 2024. UNIVERSITY 0f PENNSYLVANIA



Information Pursuit: Problem Formulation

* Notation

— X € 2 : input variable (data).
— Y e % : prediction variable (label).
— Q0 ={q:2 — A} query set. X q a

« Querier 7 : a function that selects the next question given history.

(qlzk’ al:k) —) & —>qk+1
» Codep(X) : chain of query-answe. _ _ :lected by the querier for input X.

(qlzk’ al:k)



Information Pursuit: Optimal Querier

- What properties should an ideal querier have?

— Minimality: shorter explanations are easier to interpret and thus preferred.

— Sufficiency: explanations (query-answer chains) should be a sufficient
statistic for Y.

- Balance minimality of explanation with sufficiency via the objective:
min E ”cc)deg()() H (Minimality)
St P(Y‘ Codely(X)) = P(Y] X) (Sufficiency)

- Above problem is NP-Hard to solve [1], thus need for approximations.

B4R 0y

[1] H. Laurent and R. L. Rivest, "Constructing optimal binary decision trees is np-complete", Inf. Process. Lett., vol. 5, no. 1, pp. 15-17, 1976. UNIVERSITY 0f PENNSYLVANIA



Generative Information Pursuit (G-1P)

« Given query set O, Information Pursuit (IP) selects queries
sequentially and adaptively in order of information gain [1].

[nformation Pursuit Algorithm
Queries are chosen according to observed «x.

*  First query and prediction:

¢ = argmax [(q(X);Y) y1 = argmaxP(y | ¢1(2))
qeq yey

* Next query and prediction:

qr+1 = argmax I(q¢(X);Y | qux(x)) Yr+1 = argmax P(y | q.x41(7))
qeq yeyY

 Termination and prediction:

dr+1 = 4STOP if maXI(q(X);Y \ Q1:L(5U)) =0 yr+1 = argmaxP(y | qi.r.(x))
qe@ yey

qlzk(x)is the event that contains all realizations of X that agree on the first k query-answers for x. P
@ UI\'IVI.RSI'IQfPIiNNSYl.VA\IA

[1] Geman and Jedynak, An active testing model for tracking roads from satellite images, TPAMI, 1996.



Generative Information Pursuit (G-1P)

« Selecting the first query requires computing

argmax [ (q(X ); Y)
q€0
History

- Later queries need computing A/
argmax I(q(X);Y | g.(x))
q€Q

« Generative IP: learn deep generative model for P(¢(X);Y) and use it
to compute mutual information (via sampling) and select best query.

« Challenge: estimating mutual information in high dimensions is hard.

BSR4
... ‘ :I II I
‘ UNIVERSITY 0

[1] Chattopadhyay, Slocum, Haeffele, Vidal, Geman. (2022). Interpretable by design: Learning predictors by composing interpretable queries. TPAMI 2022. f PENNSYLVANIA



Variational Information Pursuit (V-IP)

- Train querier g, to select the most informative query for classifier

min Ey ¢[Dgy

0.n

S.t. qn:gn(S), //%(qun,S) =

<P(Y|X)|| <Y| S>]

« Theorem: selecting the most informative query given history = finding
query that. when added to the historv. aives best prediction.

X

| Classifier |
f:S-Y

T
1

History
S = {q: 9:(x°")}1.x

| Querier

g:S—-4q

. obs
Given:

Query Set

| Query Answer

Qk+1(x0bs)}

______________________________________________________________________________________________

>

end to histo
A Predictionsr,yICLR 2023.

B4R 0y
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IP vs Orthogonal Matching Pursuit (OMP)

« IP: Given queries selected « CLIP-IP-OMP [1]: decompose image as sparse
thus far, IP selects query that is linear combination of semantic dictionary
most informative for Y &
Qi1 = argmax I(q(X); Y| g (x)) A
k+1 "0 | 1:k C ) [ 1 ,+\
« OMP: given atoms selected \ f.(' - : W noise
thus far, OMP selects atom v :
that is most correlated with x \& _J / '
| Y ) 0
m}n [1Bllys.t. Df=x ® @9&\0 &‘@%\ &\Q@ n?é?,@ +
| | a0 & @ —
Iyl = arggll)ax | (d, X — Dﬁk> | g'{:xatg:mebrgggﬁ:gng . OJ

Image credit:

B4R 0y

[1] Chattopadhyay, Pilgrim, Vidal. Information Maximization Perspective of Orthogonal Matching Pursuit with Applications to Explainable Al. NeurlPS 2023. UNIVERSITY 0f PENNSYLVANIA


https://en.wiktionary.org/wiki/cat#/media/File:Cat03.jpg

CLIP-IP-OMP: Details

Input image Text concepts

CLIP Text Encoder

CLIP Image Encoder

Image embedding Text embeddings
(signal x) for each concept
(dictionary D)

Sparse code fi for image in

terms of concepts _
Explanation for

% provided by
sparse code
v and classifier

Prediction % weights

Learned classifier weights

Penn

[1] Chattopadhyay, Pilgrim, Vidal. Information Maximization Perspective of Orthogonal Matching Pursuit with Applications to Explainable Al. NeurlPS 2023. @ UNIVERSITY 0f PENNSYLVANIA



Summary of the Information Pursuit Framework

 Q1: How do we define the set of queries?

— Defined by domain experts [1].
— Defined by large language models [4].

« Q2: Given an input and a query, how do we answer the query?

— Train classifiers on data annotated with query answers by task experts [1].
— Use domain-specific pre-trained large vision language models [4].

« Q3: How do we select queries that form the explanation?

— Information Pursuit: Select smallest number of queries that are sufficient
for prediction using Generative IP [1], Variational IP [2], and OMP [3].

[1] Chattopadhyay, Slocum, Haeffele, Vidal, Geman. Interpretable by design: Learning predictors by composing interpretable queries. TPAMI 2022.

[2] Chattopadhyay, Chan, Haeffele, Geman, Vidal. Variational Information Pursuit for Interpretable Predictions, ICLR 2023. B GRY

[3] Chattopadhyay, Pilgrim, Vidal. Information Maximization Perspective of Orthogonal Matching Pursuit with Applications to Explainable Al. NeurlPS 2023. '.‘ P

[4] Chattopadhyay, Chan, Vidal. Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification. ICLR 2024. 0‘0 e I l I I
[5] Chattopadhyay, Haeffele, Vidal, Geman. Performance Bounds for Active Binary Testing with Information Maximization. ICML 2024. UNIVERSITY 0f PENNSYLVANIA



Applications




Interpretable Image Classification by V-IP

- Task: Image
classification.

1.0
0. Init
1. Mammal
0.8 2. black and brown markings

« Query set: Queries
about presence or

3. a small to medium sized dog

4. a Monkey

. 0.6 5. a tail that hangs down
absence of different o ong, shasay e
0.4 7. A collar

semantic concepts.

8. artiodactyl

9. short, front legs
10. long head with curved horns

11. a long head and muzzle

. Dataset: ImageNet I
— 1000 classes 0o

12. a prey animal

S, By G b o 4. 4
S S04 2. X% NS S,
D 6, 05 0 O o, s, 0%,

° s@ °/>, o, //@ 6”60860

7%, o

(€2



Interpretable Medical Diagnosis by VI-P

- Task: Disease diagnosis.

« Query set: Queries about presence or
absence of different symptoms.

Dataset: SymCAT-200

— 1.1M doctor-patient dialogues about 326
symptoms indicative of 200 diseases.

— Each dialogue: 2-3 symptoms per patient.

— 326 binary queries, one per symptom.

6. Shortness of breath

8. Diminished hearing

0. Ear pain

1. Sore throat

2. Fever

3. Cough

4. Nasal congestion

5. Allergic reaction

7. Painful sinuses

9. Dizziness

10. Skin rash

11. Itchiness of eye

12. Hoarse voice

'\00 <\° K\(J d (,)\ \ > ’b O



Accuracy Versus Number of Queries

Test Accuracy

Test Accuracy

1.00

0.75

o
U
Q

0.25]

0.00

0.60

o
'S
]

0.30

0.15

0.00

(a) CIFAR-10

—— Random

—— Variational-IP (Ours)
—— Probabilistic HardAttn

—— RAM+

(b) CIFAR-100

1 2 3

4
# of queries

5

1.00

0.75

Test Accuracy
o
w
o

0.25

0.00

(c) SymCAT-200

Variational-IP top 1

—e— Variational-IP top 3

—*— Variational-IP top 5
+- BSODAtop 1

—e— BSODA top 3

—+— BSODA top 5

—+— REFUEL top 1

f/ —e— REFUEL top 3

¢ —+— REFUEL top 5

0 5 10 15 20
# of queries

Penn

UNIVERSITY 0f PENNSYLVANIA



Accuracy-Explainability Tradeoff

- How far is interpretable-by-design from black-box model performance

Test Accuracy
© © ©
IN o o

o
N

o
o

CIFAR-100 Accuracy Gap
~ :
—_— P
= CLIP ViT-B/16
0 100 200 300 400

Avg. # of Queries

Test Accuracy
© © ©
R (o)} [00]

o
N

o
o

ImageNet Accuracy Gap
v g
— P
—— CLIP ViT-B/16
0 100 200 300 400

Avg. # of Queries

e
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UNIVERSITY 0f PENNSYLVANIA



Interpretable Radiological Report Classification

« Task: Predict disease label in a
radiological report.

« Query set: Queries about presence or
absence of facts in a radiology report.

- Dataset: MIMIC-CXR

— Data: 227,827 reports.

— Queries are binary questions, one for
each possible fact.

— The task is to predict the disease label.

B 540N
.
&
UNIVERSITY 0f PENNSYLVANIA



Interpretable Radiological Report Classification

 Q1: How do we define the set of queries?

— Leverage LLMs and medical knowledge to extract 591,920 facts from
227,827 reports in the MIMIC-CXR dataset [1].

« Q2: How do we answer a query for a given input?

— Leverage LLMs and medical knowledge to verify if a fact is present in a
radiology report [2].

« Q3: How do we select the best queries to form an explanation?

— Select smallest number of facts that are sufficient for disease prediction [2]
using Variational IP [3,4].

[1] Messina, Vidal, Parra, Soto, Araujo. Extracting and Encoding: Leveraging LLMs and Medical Knowledge to Enhance Radiological Text Representation. ACL 2024. B850y

[2] Ge, Chan, Messina, Vidal. Information Pursuit for Interpretable Classification of Chest Radiology Reports. ArXiv 2025. '0‘ Pe [ ] [ ]
[3] Chattopadhyay, Chan, Haeffele, Geman, Vidal. Variational Information Pursuit for Interpretable Predictions. ICLR 2023. .‘. J
[4] Chattopadhyay, Chan, Vidal. Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification. ICLR 2024. UNIVERSITY 0f PENNSYLVANIA



Interpretable Radiological Report Classification

 Average precision (AP) and F1 score of IP-CRR on six binary
prediction tasks:
— Lung Opacity (LO), Calcification of the Aorta (CA), Support Devices(SD),
— Cardiomegaly(CM), Pleural Effusion(PE), and Pneumonia(PN).

Methods ’ AP ’ F1
|LO CA SD CM PE PN’LO CA SD CM PE PN

CXR-BERT (FT-Last)[0.900 0.361 0.969 0.864 0.945 0.449|0.829 0.223 0.912 0.789 0.887 0.449
CXR-BERT (FT-All) [0.984 0.992 0.970 0.964 0.962 0.641|0.987 0.991 0.978 0.982 0.953 0.541

Flan-T5-large 0.527 0.073 0.445 0.380 0.616 0.190{0.663 0.139 0.321 0.543 0.754 0.299
CBM 0.947 0.345 0.934 0.791 0.874 0.432|0.884 0.241 0.853 0.738 0.801 0.431
IP-CRR 0.972 0.578 0.959 0.892 0.925 0.468(0.918 0.350 0.889 0.811 0.860 0.451

B4R 0y
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Summary

- Information Pursuit: an interpretable-by-design prediction framework.

« Generative model: use LLMs to define queries, VLMs to answer
queries, and G-IP, V-IP, OMP to select queries and make predictions.

Input image x°PS

e o

G

)

Ask a sequence of interpretable queries about x

q1- Has shape perching-like? Yes
q». Has bill shape all-purpose? Yes
q3. Has belly color yellow? Yes

q4. Has upperparts color yellow? No

qs- Has throat color yellow? No
qe- Has breast color black? Yes
q;. Has belly color olive? Yes

obs

Predicted bird species

—— Green Jay with
99% probability



Open Questions

- How to define interpretability?

— Hypothesis tests on the importance of a feature?

— Minimum set of interpretable features that are sufficient for prediction?
— What about causality-based explanations?

- How to evaluate if a model is interpretable?
— Human evaluations?

— Can humans predict a class based on explanation?
— Benchmarks
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Thank you

l% UNIVERSITY 0 f PENNSYLVANIA






* Add Text here

* Add Text here

B 540N
.
R
UNIVERSITY 0 f PENNSYLVANIA



& Penn

UNIVERSITY 0f PENNSYLVANIA




